Archiv der Kategorie: Alltag

Warum verspäten sich Züge im Herbst?

Die Tage werden kürzer, das Wetter wird schlechter und gerade jetzt haben Züge und S-Bahnen häufiger Verspätungen und man muss in der Kälte am Bahnsteig warten. Man könnte meinen die Bahn will ihre Kunden verärgern, doch es gibt tatsächlich eine plausible Erklärung für dieses Phänomen. Blätter auf den Gleisen. Hört sich komisch an, ist aber so. Die im Herbst von den Bäumen und Büschen fallenden Blätter erschweren den Bahnverkehr erheblich.

Die Blätter fallen entweder direkt auf die Gleise oder werden durch den Luftzug vorbeifahrender Züge auf die Gleise gewirbelt. In Kombination mit Regen oder Feuchtigkeit bilden platt gefahrene Blätter auf den Schienen einen schmierigen Film, der die Haftung der Züge auf den Gleisen stark reduziert. Das Resultat sind eine geringere mögliche Beschleunigung und vor allem ein längerer Bremsweg, weshalb Lokführer angehalten sind die Geschwindigkeit in den kritischen Monaten zu reduzieren bzw. Bremsvorgänge früher einzuleiten. Macht man das an jeder Station, so kann sich auf einer Strecke schon mal eine Verspätung von mehreren Minuten ansammeln und die frierenden Bahnfahrer müssen länger auf ihren Zug warten.

Natürlich geht die Bahn gegen dieses Phänomen vor. So werden beispielsweise gleisnahe Büsche und Bäume vor Herbstbeginn zurückgeschnitten. Auch Schienenreinigungsfahrzeuge sind in dieser Zeit häufiger im Einsatz allerdings können diese nur außerhalb der Stoßzeiten die Gleise „blockieren“, Blätter fallen aber leider zu jeder Tages- und Nachtzeit.

Man kann sich also über zu spät kommende Züge mit einsetzen des nasskalten Wetters aufregen, oder man akzeptiert, dass es sehr wohl plausible Gründe für die kleine Verspätung der S-Bahn gibt.

 

Quellen:

https://www.spektrum.de/frage/warum-verspaetet-sich-die-bahn-durch-laub/1604792

Advertisements

Wie ist das jetzt mit der Zeitumstellung?

Jeweils am letzten Wochenende im März und im September wird die Zeit um eine Stunde vor bzw. zurück gestellt. Doch das soll sich jetzt ändern. Ein Online-Umfrage der EU hat ergeben, dass ein Großteil der Teilnehmer dafür ist die Zeitumstellung abzuschaffen. Auch wenn diese Umfrage in keinster Weise repräsentativ ist, machen sich die führender Politiker der EU zur Zeit Gedanken über ein mögliches neues Zeitmodell für Europa.

Bereits während der Weltkriege wurde eine Sommerzeit eingeführt, um Energie für abendliche Straßenbeleuchtung zu sparen und diese lieber in Kriegsgeschäfte zu investieren. Allerdings wurden diese Zeitumstellungen in jedem Land separat geregelt und nach Kriegsende meist wieder abgeschafft. Erst 1980 wurde für Deutschland die für Ost und West einheitlich geltende Zeitumstellung im Sommer eingeführt. Bis 1996 wurde diese dann auch in den anderen EU-Ländern vereinheitlicht.

Die Sinnhaftigkeit in Bezug auf die Energieeinsparung wurde von Anfang an kritisch gesehen und mittlerweile gibt es Studien, die belegen, dass es keinen merklichen Unterschied macht ob auf Sommerzeit umgestellt wird oder nicht. Dazu kommt dann noch zweimal im Jahr die Störung des Biorhythmus, was viele Leute in der Zeit der Umstellung als unangenehm empfinden.

Sehr wahrscheinlich ist, dass mit dem Aus der Zeitumstellung die sogenannte Sommerzeit dauerhaft eingeführt wird. Das bedeutet das sich für uns nur im Winter etwas ändert. Es bleibt nämlich abends eine Stunde länger hell, dafür geht die Sonne morgens erst eine Stunde später auf. Mir soll das recht sein aber auch gegen dieses Modell werden bereits erste Kritiken laut. Durch die längere Dunkelzeit morgens sollen Schüler beispielsweise weniger produktiv sein. Allerdings steht dem gegenüber eine potentiell längere Freizeit bei Tageslicht, was wiederum einen positiven Einfluss haben kann.

Man sieht es ist wie immer schwierig, wenn nicht sogar unmöglich es allen recht zu machen. Wir werden also sehen, wie sich die EU-Kommission entscheidet und in welcher Zeit wir vielleicht nächstes Jahr schon leben.

 

Quellen:

https://www.zeit.de/wissen/2018-07/sommerzeit-zeitumstellung-umfrage-eu-buerger

https://www.zeit.de/wissen/2018-08/eu-kommission-zeitumstellung-ergebnisse-umfrage-ausschluesselung?wt_zmc=koop.ext.zonaudev.spektrumde.feed.so-haben-eu-buerger-zur-zeitumstellung-abgestimmt.bildtext.link.x&utm_medium=koop&utm_source=spektrumde_zonaudev_ext&utm_campaign=feed&utm_content=so-haben-eu-buerger-zur-zeitumstellung-abgestimmt_bildtext_link_x

Was ist eigentlich Mikroplastik?

Immer mehr wird darüber gesprochen und immer öfter steht es im Mittelpunkt der Medien – Mikroplastik. Aber was genau ist eigentlich Mikroplastik, wo kommt es her und was hat es für Auswirkungen?

Allgemein wird Mikroplastik als Kunststoffteilchen definiert, die kleiner als 5 mm sind. Hierbei wird unterschieden zwischen gezielt hergestelltem und ungewolltem Mikroplastik. Viele Kosmetik Produkte enthalten absichtlich kleinste Kunststoffpartikel, die einen reinigenden Effekt haben sollen. Doch der Großteil des Mikroplastiks entsteht durch Abrieb von kunststoffhaltigen Produkten. Den wohl größten Anteil macht dabei der Reifenabrieb auf Straßen aus. Die sehr feinen Partikel werden dann über die Luft oder die Kanalisation in Flüsse und Meere transportiert. Auch synthetische Kleidung verursacht beim Waschen durch Abreibung Mikroplastik Partikel. Eine weitere große Quelle ist sogenanntes Makroplastik im Meer, also größere aus Kunststoff bestehende Teile, die in den Ozeanen schwimmen. Durch die UV-Strahlung der Sonne verspröden diese Teile und werden durch die Bewegungen im Meer mechanisch zerkleinert bis sie auch zu Mikroplastik zählen.

Die Auswirkungen werden momentan ausgiebig untersucht. Es wurde beispielsweise bereits festgestellt, dass Meerestiere, die sich von Plankton ernähren, viele Mengen Mikroplastik aufnehmen, welches dann zu Entzündungen des Verdauungstraktes führen kann. Außerdem können sich in den Plastikteilchen Giftstoffe anreichern, welche dann auch für Meeresbewohner zum Verhängnis werden können. Die Auswirkungen auf den Menschen sind noch nicht weit genug erforscht aber Fakt ist, dass über die Nahrungskette das von uns erzeugte Mikroplastik in unsere Körper gelangt und dort mit Sicherheit keinen positiven Effekt auf uns hat.

Ein riesen Problem stellt dabei die Langlebigkeit der Kunststoffe dar. Die meisten Partikel benötigen mehrere hundert Jahre um sich in die Einzelteile abzubauen. Reifenabrieb beim Autofahren lässt sich leider nur durch weniger fahren reduzieren. Allerdings gibt es im Internet Listen mit Kosmetik Produkten, die auf Mikroplastik verzichten. So kann man zumindest einen, wenn auch kleinen, Beitrag zu dessen Reduzierung beitragen. Die allgemeine Vermeidung von Kunststoffmüll trägt natürlich auch dazu bei den Anteil an Plastik und Mikroplastik in den Meeren zu reduzieren.

 

Interessanter Poetry-Slam Beitrag zu diesem Thema:

 

Quellen:

https://www.spektrum.de/news/die-giftige-fracht-im-mikroplastik/1585272

http://oceanblog.de/2017/04/mikroplastik-im-meer/

Wie funktioniert ein selbst kühlendes Bierfass?

Im Sommer am See, auf der Grillparty oder am Festivalgelände ohne Strom ein kühles Bier genießen zu können ist nicht immer einfach. Selbst kühlende Bierfässer sind hierfür perfekt geeignet. Man muss nur einen Hebel umlegen und das Bier ist innerhalb weniger Minuten auf Kühlschranktemperatur. Aber wie funktioniert das, so ganz ohne Strom?

In der Technik eines selbst kühlenden Bierfasses werden rein physikalische Effekte ausgenutzt. Nämlich zum Einen die Verdunstung von Wasser und zum Anderen die Adsorption von Wasserdampf auf einer hydrophilen, also Wasser anziehenden Oberfläche. Wie ist nun so ein Bierfass aufgebaut? Ganz innen liegt natürlich der Behälter für das Bier. Direkt um diesen Behälter befindet sich eine Schicht mit einem Material, das Wasser aufsaugen kann. Das kann zum Beispiel eine Art Fließ oder Watte sein. In der nächsten Schicht befindet sich ein so genannter Zeolith. Das ist ein in der Natur vorkommendes, poröses Material mit sehr kleinen Poren. Dieses Zeolith Material hat auf Grund der feinen Poren eine sehr große Oberfläche. Außerdem ist es hydrophil. Das bedeutet, dass Wasser(dampf) stark dazu tendiert sich auf der Oberfläche des Zeolithen anzulagern – man spricht dabei von adsorbieren. Die Kammern mit nasser Watte und Zeolith sind abgetrennt und können über ein Ventil miteinander verbunden werden. Außerdem wird die Zeolith-Kammer so gut es geht evakuiert, so dass ein Vakuum vorliegt. Auch aus der Kammer mit der nassen Watte wird die Luft gesaugt, allerdings nur so weit, dass das Wasser gerade so noch flüssig bleibt. Bei zu geringem Druck würde das Wasser schon verdampfen bevor man das Ventil öffnet.

In diesem Zustand wird die innerste Kammer des Fasses mit Bier gefüllt und verschlossen. Ab diesem Zeitpunkt kann jederzeit der Hebel am Fass umgelegt werden, der das Ventil zwischen den evakuierten Kammern öffnet. Wenn das geschieht, findet ein Druckausgleich statt, da in der Watte-Kammer ja noch ein Restdruck gelassen wurde. Dieser sinkt jetzt noch weiter und das Wasser in der Watte fängt an zu verdampfen. Das Verdampfen benötigt aber Energie. Diese Energie wird dem Bier entzogen, welches dadurch abgekühlt wird. So weit so gut doch in einer geschlossenen Kammer verdampft nur ein geringer Teil des Wassers. Nämlich so lange, bis sich ein Gleichgewicht zwischen Flüssigkeit und Dampf eingestellt hat. Jetzt kommt der Zeolith ins Spiel. Durch die Adsorption des verdampften Wassers auf dessen Oberfläche sorgt der nämlich dafür, dass sich eben kein Gleichgewicht einstellt, sondern der entstehende Wasserdampf sofort „abgezogen“ wird.  Der Verdampfungsprozess kann somit weiter laufen und das Bier wird weiter gekühlt.

Dem Wasser in der Watte wird durch die Verdampfung so viel Wärme entzogen, dass es relativ schnell sogar gefriert. Ab diesem Zeitpunkt verlangsamt sich die Verdampfung. Das Bier wird aber trotzdem weiter gekühlt, da die Wärme aus dem Bier jetzt auch noch dafür benötigt wird um das gefrorene Wasser erst einmal zu schmelzen. Dadurch hält der Kühlvorgang über mehrere Stunden an und es kann lange kaltes Bier genossen werden.

Während der Adsorption des Wassers wird die aus dem Bier gezogene Wärme übrigens wieder freigesetzt und über die Fasswand nach außen abgegeben. Das Fass fühlt sich daher von außen warm an, wird innen aber gekühlt. Bei der nächsten Grillparty weißt du jetzt also auch warum das Bier durch das Umlegen eines Hebels gekühlt werden kann.

 

Quellen:

http://www.uni-protokolle.de/Lexikon/Selbstk%FChlendes_Bierfass.html

http://www.tucher.de/unsere-biere/unser-sortiment/unser-coolkeg/

Warum dauert es in den Bergen länger ein Ei zu kochen?

Warst du schon einmal in den Bergen und hast Frühstückseier gekocht? Dann ist dir sicher aufgefallen, dass es in höheren Lagen länger dauert bis ein Ei hart ist. Aber woran liegt das und gibt es eine Höhe ab der man Eier gar nicht mehr hart kochen kann?

Der Grund für die längere Kochdauer ist der sinkende Luftdruck mit zunehmender Höhe. Der Luftdruck auf Meereshöhe beträgt im Schnitt 1013 hPa (Hektopascal) oder 1 bar. Mit zunehmender Höhe nimmt der Luftdruck ab. Auf 1000 m Höhe liegt der Luftdruck zum Beispiel nur noch bei etwa 890 hPa. Auf dem höchsten deutschen Berg, der Zugspitze (2962 m) liegt der Wert bei ca. 690 hPa. Man sieht der Luftdruck nimmt rapide ab, je höher man kommt. Aber was hat das Ganze mit der Zeit zum Eierkochen zu tun?

Die Antwort liegt in der Temperatur, bei der Wasser kocht. Jetzt kann man sagen, dass man doch schon in der Schule lernt, dass Wasser bei 100 °C kocht. Das stimmt aber nur für bestimmte Bedingungen, nämlich bei einem Umgebungsdruck (Luftdruck) von 1013 hPa (1bar). Mit steigendem Druck steigt auch die Temperatur, bei der Wasser zu kochen beginnt. Andersherum nimmt diese Temperatur bei sinkendem Druck auch ab. Man kann sich das so vorstellen, dass die Wassermoleküle beim Kochen ja vom flüssigen Zustand in den gasförmigen Zustand übergehen müssen. Auf die Wasseroberfläche wirkt immer der Luftdruck. Ist dieser höher, so ist es für die Wassermoleküle schwerer aus dem flüssigen Wasser in das Gas überzugehen und man benötigt eine höhere Temperatur. Sinkt der Luftdruck wird dieser Vorgang vereinfacht und die Siedetemperatur, also die Temperatur, bei der das Wasser kocht, sinkt.

Zurück zum Eierkochen. Da Eier in Wasser gekocht werden, ist die Temperatur des Wassers ausschlaggebend dafür, wie lange es dauert bis die Eier hart sind. Höhere Temperatur heißt mehr Wärme, die in das Ei übergehen und das darin enthaltene Eiweiß zum stocken bringen kann. Aus diesem Grund dauert das Eierkochen in höheren Lagen, und damit bei geringerem Luftdruck, länger als auf Meereshöhe. Aber bis zu welcher Höhe kann man denn überhaupt noch Eier kochen?

Wenn man den mit der Höhe abnehmenden Druck und die mit abnehmendem Druck sinkende Siedetemperatur des Wassers betrachtet, kann man näherungsweise sagen, dass die Temperatur, bei der Wasser kocht, etwa alle 300 Höhenmeter um 1 °C abnimmt. Das bedeutet, dass beispielsweise auf 3000 m Wasser nur noch bei 90 °C kocht. Nun ist natürlich die Frage bis zu welcher Temperatur man ein Ei noch hart kochen kann. Das Eigelb, das übrigens mehr Proteine (Eiweiße) enthält als das Eiweiß, gerinnt bei etwa 65 °C. Das Eiweiß hingegen wird erst bei 82,5 °C komplett hart. Um ein Ei also ganz hart zu kochen muss das Wasser mindestens eine Temperatur von 82,5 °C haben. Nimmt man die oben genannte Näherung an, entspricht das einer maximalen Höhe von 5250 m. Rein rechnerisch ist es also ab dieser Höhe nicht mehr möglich ein Ei komplett hart zu kochen. In den Alpen bekommt man hier also keine Probleme beim Eierkochen, es kann bloß mal etwas länger dauern.

Abhilfe könnte übrigens ein Schnellkochtopf schaffen. Hier wird genau der entgegengesetzte Effekt ausgenutzt. Im Schnellkochtopf wird nämlich ein Überdruck erzeugt, wodurch die Siedetemperatur des Wassers wieder steigt. Wer also auf einem 6-,7-oder 8-Tausender ein hart gekochtes Ei essen will, sollte es entweder unten schon kochen oder sich einen guten Schnellkochtopf mitnehmen.

 

Quellen:

http://www.seilnacht.com/versuche/destill.html

https://de.wikipedia.org/wiki/Gekochtes_Ei#cite_note-Gruber-2

http://www.gerd-pfeffer.de/atm_luftdruck.html

https://de.wikipedia.org/wiki/Luftdruck#Abnahme_mit_der_Höhe

Flagge oder Fahne – Was ist da der Unterschied?

Die Fußball Weltmeisterschaft ist zwar gerade zu Ende gegangen, trotzdem sieht man an vielen Häusern oder in Gärten noch die Farben und Symbole der teilnehmenden Nationen hängen. Die Einen sagen sie hätten eine Fahne ihres Landes, die Anderen eine Flagge. Aber was ist da eigentlich der Unterschied bzw. gibt es überhaupt einen?

Tatsächlich gibt es sehr wohl einen Unterschied zwischen einer Fahne und einer Flagge. Eine Fahne ist in der Regel ein Unikat, dass für einen ganz bestimmten Verein, eine Ortschaft oder Ähnliches steht. Von dieser Fahne gibt es genau eine. Diese hat damit einen oft hohen Wert für den oder die Besitzer und symbolisiert meist bestimmt Werte für die sie stehen soll.

Eine Flagge hingegen repräsentiert zwar auch ein bestimmtes Land, Ort, oder Verein, ist aber keinesfalls ein Unikat sondern eines von vielen Duplikaten. Die Flagge eines Landes beispielsweise gibt es in tausendfacher Ausführung in den verschiedensten Größen und Varianten.

Während der Fußball WM kommen also in der Regel eher Flaggen zum Einsatz. Wenn beim Kirchweihumzug ein ortsansässiger Verein sein Wappen präsentiert, kann man dagegen von einer Vereins-Fahne sprechen. Im alltäglichen Sprachgebrauch werden diese Begrifflichkeiten jedoch oft vermischt bzw. einheitlich verwendet.

 

Quelle:

https://www.spektrum.de/kolumne/fahne-oder-flagge/1573056

Herd vs Wasserkocher – Womit sollte man Wasser kochen?

Kochst du dein Nudelwasser auf dem Herd oder benutzt du dafür den Wasserkocher? Hast du dich überhaupt schon einmal gefragt welche Variante sinnvoller ist? Eine gute Frage mit einer einfachen Antwort: Mindestens mal aus energetischer Sicht ist der Wasserkocher klar die zu bevorzugende Variante. Warum das so ist möchte ich an einem kurzen Beispiel erklären.

Um beide Methoden vergleichen zu können muss man zunächst mal wissen, welche Leistungen und damit welchen Stromverbrauch beide Varianten haben. In meinem Beispiel nehme ich an, dass die Herdplatte bis zum kochen des Wassers auf höchster Stufe läuft. Auf dieser Stufe hat sie eine Leistung von 1500 Watt. Der Wasserkocher in meinem Beispiel  ist in der Lage 2000 Watt zu leisten. Als nächstes muss die Zeit betrachtet werden, die es dauert bis das Wasser kocht. In meinem Beispiel nehme ich ungefähre Erfahrungswerte an. Diese betragen für die Herdplatte etwa 6 Minuten und für den Wasserkocher 2 Minuten. Natürlich sind diese Werte von der Menge des Wassers abhängig, werden der Einfachheit halber hier aber einfach so gewählt.

Der jeweilige Stromverbrauch errechnet sich jetzt aus dem Produkt der Leistung und der benötigten Zeit in Sekunden. Folglich lautet die Rechnung für die Herdplatte: 1500 Watt (Joule pro Sekunde) mal 360 Sekunden (6 Minuten) ergibt 540.000 Joule. Eine Kilowattstunde, in der der Stromverbrauch in der Regel gemessen wird, sind 360.000 Joule. Somit verbraucht die Herdplatte zum Wasserkochen 1,5 kWh. Die gleiche Rechnung für den Wasserkocher lautet 2000 Watt mal 120 Sekunden und ergibt 240.000 Joule bzw. 0,67 kWh. Man sieht also, dass das Kochen von Wasser mit einem Wasserkocher weniger Strom verbraucht, als im Topf auf dem Herd. Jetzt fragst du dich vielleicht warum das so ist. Auf der Herdplatte geht insgesamt einfach mehr Wärme an die Umgebung und damit nicht direkt ins Wasser.

Eine kleine Zusatzrechnung: Angenommen man benötigt dreimal pro Woche kochendes Wasser um Essen zuzubereiten. Dann sind das ca. 150 mal im Jahr. Beim Umstieg von Herd auf Wasserkocher  würde man damit im Jahr etwa 125 kWh sparen. Bei einem Strompreis von 30 Cent pro kWh sind das 37€ also einmal gut essen gehen 😉

Warum brennt eine Magnesiumfackel unter Wasser?

An die Taucher unter euch: Habt ihr schon einmal eine Magnesiumfackel unter Wasser gezündet? Eigentlich denkt man ja, dass Wasser eine Flamme eher löscht. Magnesiumfackeln brennen aber auch unter Wasser. Aber wie geht das?

Magnesium ist ein Metall, das in Pulverform leicht brennt. Wenn Magnesium brennt, wird bei dieser Reaktion sehr viel Energie freigesetzt. Die Folge ist, dass die Verbrennung bei über 2500°C stattfindet. Jetzt muss man mal überlegen, was für eine Verbrennung benötigt wird. Ein brennbares Material (hier Magnesiumpulver), Sauerstoff und eine Zündquelle wie zum Beispiel ein Funke. Normalerweise hat Wasser eine löschende Wirkung, da es einer Flamme den Sauerstoff entzieht und gleichzeitig das brennbare Material unter die Zündtemperatur abkühlt. Andererseits ist die chemische Formel für Wasser H2O. Damit besteht es aus zwei Atomen Wasserstoff und einem Atom Sauerstoff. Es ist also genügend Sauerstoff im Wasser enthalten. Durch die sehr hohe Verbrennungsenergie, die in einer Magnesiumfackel freigesetzt wird, kann das Wasser teilweise in seine Bestandteile „zerlegt“ werden. Dadurch wird elementarer Sauerstoff frei, der wiederum für die weitere Verbrennung des Magnesiums verwendet werden kann. Dadurch entsteht wieder viel Energie und so weiter. Folglich ist eine Magnesiumfackel in der Lage auch unter Wasser zu brennen und ermöglicht es somit Tauchern gegebenenfalls ein Lichtsignal zu senden um Hilfe zu holen.

Da Wunderkerzen unter anderem auch aus Magnesium bestehen, funktioniert das übrigens mit ihnen ebenfalls. Sie brennen unter Wasser weiter. Allerdings sprühen sie unter Wasser nicht mehr so schön in alle Richtungen.

 

Quellen:

https://www.abendblatt.de/ratgeber/wissen/article107759009/Warum-brennt-Magnesium-auch-unter-Wasser.html

Wie funktioniert ein Alkoholmessgerät?

Die Kirchweihzeit hat bereits begonnen und auch wenn man es meist vermeiden will, fährt der Ein oder Andere auch mal mit dem Auto hin. Hier gilt dann immer die gleiche Frage: Wie viel kann ich trinken um unter den erlaubten 0,5 Promille zu bleiben? Ein guter Test ob man noch Autofahren darf ist ein wiederverwendbares Alkoholmessgerät, wie es auch die Polizei verwendet. Man pustet hinein und auf der Anzeige steht der Promille-Wert. Aber wie funktioniert so ein Messgerät eigentlich?

Die meisten Geräte messen den Alkoholgehalt im Atem mit Hilfe einer elektrochemischen Zelle. Diese besteht aus zwei Elektroden, von denen eine mit Ethanol (also „Trink“- Alkohol) reagiert. Dabei gibt das Ethanol Elektronen ab, die dann über ein Elektrolyt zur zweiten Elektrode transportiert werden. Über eine Verbindung der beiden Elektroden fließen die Elektronen dann wieder zurück. Es entsteht also ein Stromfluss, der gemessen werden kann. Je höher der Ethanol Anteil im Atem ist, desto größer ist der Stromfluss zwischen den Elektroden. Da der Alkohol im Blut gemessen werden soll und dieser höher ist als der Anteil im Atem, wird der generierte Wert noch mit einer Konstante multipliziert und der errechnete Promille-Wert kann auf dem Display angezeigt werden.

Der Vorteil eines solchen Alkoholmessgerätes ist, dass es beliebig oft wiederverwendet werden kann. So kann man, wenn man unsicher ist, vor der Autofahrt testen, ob man noch fahren darf oder ob man doch lieber auf dem Sofa vom Kumpel übernachten sollte.

 

Quellen:

https://www.alkoholtester-infos.de/digitale-alkoholtester-funktionsweise/

https://www.tagesspiegel.de/berlin/so-funktionieren-alkoholmessgeraete-fuer-die-atemluft/851690.html

Wie wird Kaffee entkoffeiniert?

Das wohl beliebteste Morgen-Getränk ist mit Sicherheit der Kaffee. Aber nicht jeder verträgt das darin enthaltene Koffein (sieh auch: Auswirkungen von Koffein) und so kommt es, dass immer mehr Kaffee Hersteller auch koffeinfreien Kaffee anbieten. Aber wie wird der Kaffee eigentlich entkoffeiniert?

Tatsächlich gibt es bereits Erfolge koffeinfreien Kaffee zu züchten allerdings ist dieser Prozess noch nicht so weit ausgereift, dass man auf das Entkoffeinieren komplett verzichten könnte. Genau dafür gibt es aber auch einige Möglichkeiten. In allen Verfahren wird das Koffein mit Hilfe einer zusätzlich eingebrachten Substanz, einem sogenannten Extraktionsmittel, aus den Kaffeebohnen extrahiert. Für diese Extraktionsmittel gibt es mehrere Möglichkeiten, die jeweils ihre Vor- und Nachteile haben.

Die Verbreitesten will ich im Folgenden kurz erklären:

Im „Direkt Verfahren“ werden, wie in allen Verfahren, die Bohnen zuerst mit heißem Wasserdampf behandelt. Anschließend wird das Koffein mit Dichlormethan oder Ethylacetat aus den Bohnen extrahiert. Danach müssen die Bohnen getrocknet werden, um das Lösungsmittel vollständig zu entfernen, da vor allem Dichlormethan als krebserregend gilt. Ethylacetat ist weniger gefährlich, würde die Bohnen aber geschmacklich verändern.

Im „Schweiz-Wasser-Prozess“ werden den Bohnen im ersten Schritt mit Hilfe von heißem Wasserdampf alle extrahierfähigen Inhaltsstoffe entzogen. Dem mit Inhaltsstoffen angereicherten Wasser wird dann mit Filtern das Koffein entzogen. Die anderen Inhaltsstoffe bleiben im Wasser. Diesem Wasser werden jetzt frische Bohnen ausgesetzt. Da das Wasser mit allen Bestandteilen außer Koffein angereichert ist, wird den frischen Bohnen in diesem Schritt nur noch das Koffein entzogen. Dieser Prozess hat allerdings den großen Nachteil, dass ein Teil der Bohnen weggeschmissen werden muss. Außerdem kann das abgetrennte Koffein nicht gewonnen und gegebenenfalls weiterverkauft werden.

Ein weiterer Prozess ermöglicht genau das relativ einfach. Das „Kohlenstoffdioxid-Verfahren“. Hier wird das Koffein mit Hilfe von CO2 bei Drücken von mindestens 73 bar aus den Bohnen extrahiert. Das CO2 befindet sich dabei im überkritischen Zustand. Durch Absenken des Drucks kann das extrahierte Koffein verhältnismäßig leicht wiedergewonnen und das CO2 wiederverwendet werden.

Natürlich gibt es auch noch weitere Verfahren, auf die ich hier jetzt aber nicht mehr eingehen will. Alles in allem kann man sagen, dass ein relativ großer Aufwand betrieben wird, um dem Wunsch der Kunden nach koffeinfreiem Kaffee nachkommen zu können. „Koffeinfrei“ bedeutet übrigens laut EU-Richtlinie ein Koffeingehalt von weniger als 0,1%.

 

Quellen:

https://www.coffeeness.de/kaffee-koffein-entkoffeinierung/

https://www.coffeecircle.com/de/b/entkoffeinierter-kaffee