Archiv der Kategorie: Optische Phänomene

Wie entsteht ein Gewitter?

Im letzten Beitrag ging es um die Entstehung eines Tornados in einer Gewitterwolke. Diese Woche geht es darum, wie denn eine solche Gewitterwolke und die zu einem Gewitter gehörigen Phänomene wie Blitz und Donner entstehen.

Als Grundvoraussetzung wird warme, feuchte Luft in Bodennähe benötigt. Das ist der Hauptgrund, warum Gewitter meist im Sommer stattfinden. Diese warme Luft steigt auf Grund geringerer Dichte nach oben. Auf dem Weg nach oben kühlt sie sich ab. Ab einem gewissen Punkt fängt die Feuchtigkeit in der Luft an zu kondensieren und es bildet sich eine Wolke. Bei der Kondensation des Wassers wird allerdings weitere Wärme frei, die die Luftmasse weiter nach oben steigen lässt. Das Ganze passiert bis zu einem Höhenbereich in dem es so kalt ist, dass die Wassertropfen anfangen zu gefrieren. Die Eiskristalle fallen dann in der Wolke nach unten, können aber durch den in der Wolke herrschenden Aufwind wieder nach oben transportiert werden. Dabei wachsen sie immer weiter an bis sie letztendlich so groß sind, dass der Aufwind sie nicht mehr mitreißen kann und sie als Hagel, Graupel oder große Regentropfen auf die Erde fallen. Durch das ständige Hoch und Runter der Eiskristalle und Wassertropfen in der Wolke lässt sich nicht verhindern, dass diese auch aneinander stoßen und reiben. Dabei können von den aufsteigenden Tropfen Elektronen an die herabfallenden Eiskristalle abgegeben werden. Durch eine hohe Häufigkeit dieses Prozesses in der Wolke entsteht ein Ladungsfeld mit einem Elektronenüberschuss am unteren Ende (Minuspol) und einer Elektronenarmut am Kopf der Wolke (Pluspol). Diese Ladungen in der Wolke interagieren nun auch mit der Erdoberfläche. Hier gilt das allgemeine physikalische Gesetz: „Gegensätze ziehen sich an, Gleiches stößt sich ab“. Die negativ geladene Unterseite der Wolke erzeugt dadurch eine positive Ladung auf der darunter liegenden Erdoberfläche. Die Elektronen werden dort von den Elektronen der Wolke abgestoßen und es entsteht auch hier eine Elektronenarmut (Pluspol). Zwischen dem Minuspol der Wolke, der durch weitere Ladungstrennung in der Wolke immer stärker wird, und dem Pluspol auf der Erdoberfläche herrscht nun eine Spannung. Diese Spannung kann übrigens mehrere hundert Millionen Volt betragen. Wenn die Spannung groß genug ist kann sie sich in Form eines Blitzes entladen. Die kritische Spannung die überwunden werden muss liegt bei etwa 170.000 Volt pro Meter Abstand zwischen Wolke und Erdoberfläche. Blitze können allerdings auch zwischen Wolken oder innerhalb einer Wolke entladen werden. Hierfür sind etwas geringere Spannungen nötig. Deshalb ereignet sich ein Großteil der Blitze in den Wolken und nur ein geringer Teil geht bis auf die Erde.

Ein Blitz ist in der Lage die Luft auf extrem hohe Temperaturen zu erwärmen. Die Luft unmittelbar um den Blitzkanal wird schlagartig auf bis zu 30.000°C erhitzt. Die erhitzte Luft breitet sich dabei explosionsartig aus und bildet eine Druckwelle. Diese Druckwelle vernehmen wir als Donner wenn sie unser Ohr erreicht. Durch verschieden Einflüsse auf dem Weg zu uns kann der Donnerton in eine längeres „Grollen“ verzerrt werden.

Das faszinierende Phänomen Gewitter beinhaltet natürlich noch viel mehr Details aber ich denke mit dem oben Beschriebenen kann man sich ungefähr ein Bild davon machen was sich in und um einer Gewitterwolke herum abspielt.

 

Quellen:

http://www.weltderphysik.de/thema/hinter-den-dingen/klima-und-wetter/gewitterblitze/

https://www.nela-forscht.de/2011/06/08/wie-entsteht-ein-gewitter/

Wie funktioniert die 3D- Technik im Kino und Fernsehen?

Mittlerweile wird ein Großteil der neuen Kinofilme auch in 3D gezeigt.

Aber wie funktioniert eigentlich diese 3D- Technik? Und warum braucht man dafür immer eine spezielle Brille?

Dass wir mit unseren Augen überhaupt dreidimensional sehen können, liegt daran, dass unsere Augen jeweils unterschiedliche Bilder aufnehmen und an das Gehirn weiterleiten. Durch den Abstand der Augen sind die beiden, von den Augen wahrgenommenen, Bilder nicht identisch. Man könnte sagen jedes Auge nimmt die Situation aus einer anderen Perspektive auf. Unser Gehirn ist dann in der Lage aus diesen beiden Perspektiven ein dreidimensionales Bild zu generieren.

Dieses Prinzip nutzt man bei der 3D- Technik im Kino oder am Fernseher aus. Der Film muss schon mit speziellen Kameras gefilmt werden. Diese Kameras haben, ähnlich wie unsere zwei Augen, zwei Linsen in einem Abstand, der in etwa dem unserer Augen entspricht. Der Film wird also aus zwei verschiedenen Perspektiven aufgenommen. Das sieht man auch, wenn man sich einen 3D Film ohne Brille anschaut. Man sieht alles stark verschwommen oder sogar doppelt.

Aber wie schafft es jetzt eine Brille diese beiden Perspektiven wieder zu Einer verschmelzen zu lassen?

Hier wird eine Eigenschaft des Lichts ausgenutzt. Licht lässt sich so manipulieren, das es durch einen bestimmten Filter durchkommt oder eben nicht. Man nennt das polarisieren. Licht kann beispielsweise so polarisiert werden, das es nur noch aus senkrechten Komponenten besteht, das heißt, dass die Wellen des Lichts alle senkrecht verlaufen. Genauso ist auch eine waagerechte Polarisierung möglich. Jetzt gibt es Filter, die so konzipiert sind, dass sie nur senkrechtes oder eben auch nur waagerechtes Licht durchlassen. Diese Filter sind die „Gläser“ der 3D- Brille. Durch eines der Gläser gelangt nur das senkrecht polarisierte Licht, durch das Andere das waagerecht polarisierte. Wenn man nun die beiden aufgenommenen Perspektiven jeweils richtig polarisiert, sieht das eine Auge durch die Brille das eine Bild und das andere Auge das zweite. Den Rest übernimmt dann wieder unser Gehirn und baut die beiden Bilder zu Einem dreidimensionalen zusammen.

Jetzt könnt ihr beim nächsten Kinobesuch eurem Nachbar mal ganz souverän erklären, wie das denn eigentlich funktioniert mit der 3D-Technik 😉

Polarlichter – Wo kommen die eigentlich her?

Die meisten kennen sie nur aus Filmen oder von Bildern. Aber selbst dort machen sie einen spektakulären Eindruck – Polarlichter.

In diesem Artikel will ich kurz und knapp erklären, was diese Polarlichter sind und wie sie entstehen.

Der Auslöser für dieses Phänomen ist die Sonne. Von ihr werden ständig geladene Teilchen in alle Richtungen abgestoßen. Geladene Teilchen bedeutet hauptsächlich Elektronen (negativ geladen) und Protonen (positiv geladen). Diese Flut an Teilchen ist allgemein bekannt als Sonnenwind.

Polarlichter entstehen dann, wenn dieser Sonnenwind auf die Atmosphäre der Erde trifft. Da die Erde aber ein starkes Magnetfeld besitzt, das in der Lage ist die geladenen Teilchen um die Erde herum zu lenken, kommt der Sonnenwind meist nur in Polarnähe mit der Erdatmosphäre in Berührung. Hätte die Erde kein Magnetfeld, könnten wir jeden Tag und überall immer Polarlichter sehen.

Die geladenen Teilchen des Sonnenwindes leuchten aber nicht selber in den schönen Farben. Hierfür sind Sauerstoff und Stickstoffatome aus der Erdatmosphäre verantwortlich. Wenn diese nämlich vom Sonnenwind getroffen werden, werden sie ionisiert. Das heißt sie werden selber zu entweder positiv oder negativ geladenen Teilchen. Wenn nun ein positives Sauerstoff Atom auf ein negatives trifft verbinden sie sich. Bei diesem Vorgang wird Licht ausgesendet. Im Falle des Sauerstoffs ist das rotes Licht, bei Stickstoff blaues oder violettes. Grünes Licht entsteht, wenn ein geladenen Sauerstoff Atom mit anderen, nicht Sauerstoff Teilchen, interagiert.

Da die Sonnenaktivität, also die Menge an ausgesandtem Sonnenwind nicht konstant ist, tritt das Phänomen Polarlicht zu unterschiedlichen Zeiten unterschiedlich stark auf. Bei sehr starker Aktivität kann es sogar in unseren Breiten auftauchen. Dies ist allerdings sehr selten.

Das Phänomen der sich rückwärts drehenden Räder

Da ich bereits mehrere Anfragen erhalten habe einen Artikel darüber zu schreiben, warum sich Räder von Autos, Kutschen etc. in Filmen oft rückwärts drehen, werde ich dieses Phänomen hier einmal erklären.

Zunächst muss man wissen, dass Filme eigentlich aus aneinandergereihten Einzelbildern bestehen. Etwa 25 Bilder pro Sekunde. Da unser Auge und unser Gehirn nicht in der Lage sind die Bilder einzeln zu erkennen, werden sie von uns als fortlaufender Film wahrgenommen. Das Gehirn ist in der Lage, die „Lücken“ zwischen den Bildern mit logischem Inhalt zu füllen, so dass wir dann einen zusammenhängende Film sehen. Trotzdem sind es immer noch einzelne Bilder.

Nun stellen wir uns mal den Wechsel von einem zum nächsten Bild vor. Im ersten Bild ist ein Rad mit Speichen zu sehen (z.B. von einer Kutsche). Die Speichen, die sich beim Fahren der Kutsche im Kreis bewegen, sind auf diesem Bild in einer bestimmten Stellung. Im nächsten Bild, das eine fünfundzwanzigstel Sekunde später aufgenommen wurde, hat sich das Rad weiter gedreht und die Speichen sind nun in einer anderen Stellung. Jetzt gibt es drei Möglichkeiten:

  1. Das Rad dreht sich relativ langsam. Jede Speiche ist also auf dem nächsten Bild nur ein wenig weiter gedreht. In diesem Fall erkennt das Gehirn die korrekte vorwärtslaufende Kreisbewegung des Rades.
  2. Das Rad dreht sich so schnell, dass die nächste Speiche im zweiten Bild nun an derselben Stelle steht, wie die andere Speiche im ersten Bild. In diesem Fall nimmt das Gehirn gar keine Veränderung war und es sieht so aus als würde das Rad sich überhaupt nicht drehen.
  3. Bei etwas geringerer Geschwindigkeit als in 2. ist die nächste Speiche im zweiten Bild soweit gedreht, dass die kurz vor der Stelle steht, an der die andere Speiche im ersten Bild stand. Das Gehirn verbindet nun die beiden Bilder zu einer fließenden Bewegung, die uns dann aber sehen lässt, dass das Rad sich rückwärts dreht, obwohl die Kutsche vorwärts fährt.

Es kommt also auf die Geschwindigkeit an, mit der das Rad einer Kutsche oder eines Autos sich dreht. Wenn ein Auto in einem Film beschleunigt und die Reifen dabei zu sehen sind, wird es so aussehen als würden sich die Räder erst einmal immer schneller drehen, bis der oben erklärte Effekt eintritt. Ab diesem Zeitpunkt scheint das Rad sich rückwärts zu drehen und mit weiterer Beschleunigung langsamer zu werden, bis es komplett stehen bleibt. Das Gleiche wiederholt sich bei weiter steigender Geschwindigkeit.

Das gleiche Phänomen kann übrigens auch auftreten, wenn ein Auto hinter einem Zaun entlangfährt. Die Zaunbalken, die die Sicht auf das Auto verdecken erzeugen auch den Effekt der einzelnen Bilder. Diese entstehen nämlich dann, wenn der Blick zwischen den Zaunbalken durch fällt und der Autoreifen zu sehen ist.

Im Zusammenhang mit Filmen nennt man diesen Effekt „Wagenradeffekt“ oder „Speichenradeffekt„. Der allgemeine Begriff lauten „Stroboskopeffekt„.

Flimmern über heißen Oberflächen

Jetzt in der warmen Jahreszeit wieder häufig zu beobachten: Ein merkwürdiges Flimmern auf Asphalt, schwarzen Fensterbänken oder anderen heißen Oberflächen. Hast du dich schon einmal gefragt woher das kommt? Hier gibt es die Erklärung.

Zuerst einmal benötigt es dafür eine heiße Oberfläche. Und zwar eine, die deutlich wärmer ist, als die Luft darüber. Diese Luft erwärmt sich im Bereich direkt über der heißen Oberfläche, z.B. Asphalt. (Es funktioniert natürlich auch mit anderen Wärmequellen) Wärmere Luft steigt immer nach oben, da mit steigender Temperatur die Dichte der Luft sinkt und sie somit leichter wird. Die aufsteigende Luft macht dadurch wieder Platz für „frische“ Luft, die auf die Oberfläche strömen kann und sich wiederum erhitzt. Außerdem kühlt die warme Luft beim Aufsteigen langsam wieder ab, so dass sich im Bereich über dem Asphalt mehrere Luftschichten unterschiedlicher Temperatur bilden. Die Aufwärtsbewegung dieser Schichten erfolgt aber in der Regel nicht gleichmäßig, sondern wild durcheinander. In der Technik nennt man eine solche Strömung „turbulent„. Wenn nun Licht, das später in unser Auge fallen soll, durch diese turbulente Strömung aus verschieden warmen Luftschichten fällt, wird es in jeder Luftschicht unterschiedlich gebrochen. (Für eine ausführliche Erklärung des Begriffes Brechung von Licht siehe: https://lustaufwissen.wordpress.com/2015/04/28/wie-entsteht-eigentlich-ein-regenbogen/ )                                                                            Dieses „Wirrwarr“ aus gebrochenem Licht sehen wir dann als Flimmern, das aufzusteigen scheint, da sich die Luftschichten ja weiterhin nach oben bewegen.

Das gleiche Phänomen ist übrigens auch für die scheinbar nasse Straße im Sommer verantwortlich. Licht kann nämlich an einer Grenze zwischen zwei unterschiedlich warmen Luftschichten auch reflektiert werden. (Für Begriffserklärung Reflexion siehe ebenfalls: https://lustaufwissen.wordpress.com/2015/04/28/wie-entsteht-eigentlich-ein-regenbogen/ )                                                                                 Was wir auf dem Boden als Pfütze sehen, ist eigentlich die Spiegelung des Himmels.

Im Allgemeinen nennt man eine solche Spieglung „Fata Morgana„. Dabei kann nicht nur der Himmel, sondern auch andere Gegenstände oder ganze Bergketten gespiegelt werden. Allerdings sollte für eine gut sichtbare Fata Morgana kein Wind wehen, um die Luftschichten möglichst nicht zu verwirbeln. Ist das der Fall, so entsteht eine deutliche Grenze zwischen einer kühleren und einer wärmeren Luftschicht, an der sich das Licht dann spiegeln kann.

grafik_fatamorgana01

In der Abbildung sieht man die Grenzschicht zwischen den Luftschichten (schwarzer Strich). Der Baum wird an dieser Schicht gespiegelt. Das Licht ist mit grauen Pfeilen gekennzeichnet. Aus Sicht des Betrachters, sieht es so aus, als wäre der Baum an der Stelle des grünen Punktes. In Wirklichkeit ist er deutlich weiter weg. Der Baum kann zwar bei einer einfachen Spiegelung auf dem Kopf stehen, doch ist das oft nicht so genau zu erkennen.

So kann es in der Wüste vorkommen, dass Nomaden Wasserstellen, Gebirgszüge oder sogar Städte an Stellen vermuten, an denen weit und breit nichts ist. Eine gespiegelte Stadt muss natürlich existieren, sie kann aber noch viel weiter weg sein als vermutet.

Wie entsteht eigentlich ein Regenbogen?

Jeder hat schon einmal einen Regenbogen gesehen und sich an seiner Farbenpracht erfreut. Gerade weil einem Regenbogen meist ein Regenschauer vorausgeht und mit der wieder auftauchenden Sonne auf der einen, und der schwarzen Wolkenwand auf der anderen Seite ein wundervolles Lichtspiel entsteht. Doch wie genau entsteht eigentlich ein Regenbogen? Wie kann aus hellem, blendendem Sonnenlicht und einer Weltuntergang ähnlichen Regenfront ein so farbenfrohes Gebilde entstehen?

Die Antwort gibt uns die Optik, ein Teilbereich der Physik. Die Gesetze der Optik erklären unter Anderem Phänomene wie Spiegelung, Brechung oder Streuung – alles Begriffe, die man schon einmal gehört hat – aber was steckt dahinter?

Um den Regenbogen zu verstehen, muss man erst wissen, was genau eigentlich Sonnenlicht ist. Licht im Allgemeinen ist elektromagnetische Wellen. Ähnlich wie auch Radiowellen oder andere Funksignale. Entscheidend für die Eigenschaften einer elektromagnetischen Welle ist deren Wellenlänge, also der Abstand, nachdem die Schwingung der Welle wieder den gleichen Punkt erreicht hat, wie der Startpunkt. Man kann sich das genau wie eine auf und ab Bewegung von beispielsweise Wasserwellen oder einem in Schwingung gebrachten Seil vorstellen.

.winkel_funktionen_

In dieser Abbildung ist eine solche Welle zu sehen. Die hier eingezeichnete Periodendauer entspricht der Wellenlänge. Dieser Bereich wiederholt sich unendlich oft in der Welle. Die Amplitude ist ein Maß für die Intensität, ist hier aber erst mal uninteressant.

Das Spektrum der Wellenlängen einer elektromagnetischen Welle reicht von Nanometern ( ein Millionstel Millimeter) bis mehrere 100 Kilometer. Der Bereich, den wir als sichtbares Licht wahrnehmen liegt etwa zwischen 400 und 800 Nanometer.

So viel zu der grundsätzlichen Erklärung was Licht denn eigentlich ist.

Das Phänomen, das hauptsächlich für die Entstehung eines Regenbogens verantwortlich ist, ist die Brechung von Licht. Brechung kann immer dann auftreten, wenn Licht von einem Medium in ein Anderes über eine Grenzfläche übergeht. Ein Beispiel ist der Übergang von Luft nach Glas oder auch Wasser. Bei dem Durchdringen einer solchen Grenzfläche kann das Licht, je nach Bedingungen und Eigenschaften, seine Richtung ändern. Vielleicht hast du dich auch schon einmal gewundert, warum man, wenn man mit dem Kopf unter Wasser ist, nicht einfach so nach draußen schauen kann, wenn man nicht gerade senkrecht nach oben schaut. Auch hier tritt eine Brechung des Lichts ein. Das Licht außerhalb des Wassers erreicht die Wasseroberfläche und läuft dann aber nicht geradlinig weiter, sondern ändert seine Richtung und gelangt so nicht mehr in unser Auge.

lichtbrechung-dichter-duenner

Hier nochmal eine Veranschaulichung der Brechung von Licht an der Grenzfläche zwischen Luft und Wasser.

Der Brechungswinkel, der in der Abbildung mit β gekennzeichnet ist, hängt von der Wellenlänge des einfallenden Lichts ab. Ein Lichtstrahl aus blauem Licht (ca. 450nm) wird also anders gebrochen als ein Lichtstrahl rotes Licht ( ca. 700nm).

Um nun zu verstehen, warum aus Sonnenlicht ein Regenbogen aus mehreren Farben werden kann, muss man wissen, dass Sonnenlicht eine Überlagerung des gesamten Lichtspektrums ist. D. h. Sonnenlicht besteht im Prinzip aus allen Farben, deren Überlagerung uns aber weiß bzw. farbneutral vorkommt.

Wenn also Sonnenlicht von der einen Seite auf die dunkle „Regenwand“ auf der anderen Seite trifft, wird das Licht der Sonne in jedem einzelnen Regentropfen gebrochen, wobei der Wellenlängen abhängige Brechungswinkel das bis dato weisliche Licht in ein Spektrum aus Farben auffächert. Dieses breite Band an Farben sehen wir dann als Regenbogen. Die Reihenfolge der Farben in einem Regenbogen (violett, blau, grün, gelb, orange, rot) ist folglich auch immer die Selbe.

Eine Frage bleibt allerdings noch offen: Angenommen das Sonnenlicht kommt aus Sicht des Betrachters von rechts, dann ist die Regenwand auf der linken Seite. Wie kommt nun das Licht, das von rechts nach links verläuft wieder zum Betrachter in der Mitte zurück?

Hier findet ein weiteres Phänomen der Optik statt. Die Reflexion oder Spiegelung. Reflexion findet genau wie die Brechung an Grenzflächen zwischen verschiedenen Medien statt. Im Gegensatz zur Brechung gilt hier allerdings der bekannte Satz: “ Einfallswinkel gleich Ausfallswinkel“ egal für welche Wellenlänge. Was passiert also nachdem der Lichtstrahl der Sonne auf einen Regentropfen getroffen ist? An der ersten Grenzschicht von Luft nach Wasser wird das Licht gebrochen und in seine Farben auf gespaltet. Das nun regenbogenfarbene Licht läuft weiter durch den Tropfen durch, bis es auf die zweite Grenzschicht trifft. Das Ende des Regentropfens also ein Übergang von Wasser nach Luft. Hier wird ein Teil des auftreffenden Lichts reflektiert, also zurückgeworfen. Dieser Teil ist das Licht, dass wir dann als Regenbogen sehen können.

Wenn du jetzt das nächste Mal einen Regenbogen siehst und dich jemand fragt, wie das eigentlich möglich ist, kannst du ihm oder ihr dieses Phänomen ausführlich erklären.