Schlagwort-Archive: Dichte

Warum ist man im Wasser leichter als in der Luft?

Im Sommer im Freibad oder Pool, im Winter im Hallenbad oder der Therme – jeder von uns geht doch ab und zu gerne mal ins Wasser. Was dabei auffällt ist, mit jedem Schritt, den man weiter ins Wasser geht, fühlt man sich leichter. Ist man erst einmal komplett im Wasser hat man fast das Gefühl von Schwerelosigkeit. Aber warum ist das so? Herrscht im Wasser etwa eine andere Schwerkraft?

Nein, natürlich nicht. Die Schwerkraft wirkt im Wasser genauso, wie in der Luft. Grund für die scheinbare Schwerelosigkeit im Wasser ist eine andere Kraft, die sogenannte Auftriebskraft. Die Schwerkraft wirkt ja bekanntermaßen nach unten, genauer gesagt zum Mittelpunkt der Erde hin. Die Auftriebskraft hingegen wirkt in genau die entgegengesetzte Richtung, nämlich nach oben. Sie wird dadurch hervorgerufen, dass man, wenn man sich im Wasser befindet, einen Teil des Wassers verdrängt. Das Volumen des Körpers im Wasser verdrängt das Wasser, dass vorher ja noch an dieser Stelle war. Die Auftriebskraft wirkt diesem Verdrängen entgegen und möchte den Körper quasi wieder aus dem Wasser befördern. Da die Auftriebskraft in die entgegengesetzte Richtung drückt, wie die Anziehungskraft der Erde, werden wir im Wasser leichter, je weiter wir hinein gehen. Ganz von selber schwimmen tun wir dann aber leider doch nicht. Die Dichte unseres Körpers ist nämlich etwas höher als die von Wasser. Das bedeutet, dass der untergetauchte Teil unseres Körpers etwas mehr wiegt, als der Teil des Wassers, der durch den Körper verdrängt wird. Ist das nicht der Fall, wie z.B. bei Holz oder Plastik, schwimmt der entsprechende Gegenstand auf dem Wasser. Wie bereits erwähnt ist die Dichte hierfür entscheidend. Sie gibt das Verhältnis von Gewicht zu Volumen an. Für die Schwerkraft ist allein das Gewicht maßgeblich. Je schwerer, desto stärker die Anziehung zur Erde. Für die Auftriebskraft ist nur das Volumen entscheidend. Weniger dichte Materialien haben bei gleichem Gewicht ein höheres Volumen und verdrängen dadurch mehr Wasser. Die Auftriebskraft wird also irgendwann stärker als die Schwerkraft und der Gegenstand schwimmt. Ist die Dichte groß genug, ist das nicht der Fall und der Gegenstand sinkt.

Die Auftriebskraft herrscht übrigens nicht nur im Wasser. Auch die von uns verdrängte Luft erzeugt einen Auftrieb. Da Luft aber so leicht ist und damit auch der Teil der verdrängten Luft quasi nichts wiegt, ist die Auftriebskraft in Luft für uns vernachlässigbar klein, so dass nur der Einfluss der Schwerkraft zu tragen kommt.

Werbung

Das „Knacken“ der Eiswürfel

So langsam erreichen wir teilweise schon wieder sommerliche Temperaturen, so dass man doch gerne mal zu einem gut gekühlten Getränk greift. Direkt aus dem Kühlschrank ist das kein Problem. Was aber wenn das favorisierte Getränk nicht im Kühlschrank stand? Oft werden dann Eiswürfel aus dem Gefrierfach herangezogen, um das Getränk etwas abzukühlen. Wer beim Eintauchen der Eiswürfel in das Getränk schon einmal genau hingehört hat, der hat sicherlich ein signifikantes „Knacken“ wahrgenommen. Aber warum knacken Eiswürfel, wenn man sie in ein Getränk gibt?

Im Grunde liegt das an der Tatsache, dass sich Eis genau wie jeder andere Stoff mit einer Temperaturänderung ausdehnt oder zusammen zieht. Mit steigender Temperatur nimmt die Dichte des Eises ab und es dehnt sich aus. Soweit ganz normal, aber was hat das mit dem „Knacken “ zu tun? Ein Eiswürfel, der aus dem Gefrierfach kommt, hat etwa eine Temperatur von -18 °C. Ein Getränk bei Raumtemperatur etwa 20 °C. Kommt das Eis nun in Kontakt mit dem Getränk, wärmt es sich auf. Allerdings erst einmal nur die äußere Schicht des Eiswürfels. Bis die Wärme des Getränks ins Innere des Würfels gelangt dauert es einige Sekunden. Die äußere Schicht, die jetzt wärmer geworden ist, dehnt sich aus, wobei der Kern des Würfels immer noch kalt und kompakt ist. Die nicht gleichmäßige Ausdehnung des Eises sorgt dafür, dass Spannungen im Eiswürfel auftreten und schlagartig Risse entstehen. Genau das hört man dann als leises Knacken. Wer genau hin schaut, kann die Risse im Eiswürfel auch sehen.

Bei bereits sehr kalten Getränken passiert das nicht oder nur deutlich schwächer. Der geringere Temperaturunterschied zwischen Getränk und Eis lässt die äußere Schicht des Würfels weniger schnell erwärmen und die entstehenden Spannungen sind geringer. Auch wenn der Eiswürfel gerade so erst gefroren ist oder bereits länger außen liegt, wird kein Knacken zu hören sein. In beiden Fällen hat das Eis nämlich nur etwas weniger als 0 °C. Wenn nun die äußere Schicht erwärmt wird, schmilzt sie einfach zu Wasser und hat somit keinen Einfluss mehr auf den Rest des Würfels.

Wenn du dir das nächste Mal ein kühles Getränk gönnst und Eiswürfel benutzt, kannst du ja mal genau hinhören und herausfinden, ob der Temperaturunterschied groß genug ist um das „Knacken“ hervorzurufen.

 

Quellen:

https://www.ja-gut-aber.de/warum-knacken-eiswuerfel-in-getraenken/

Warum verzerrt Helium unsere Stimme?

Viele haben es sicher schon einmal ausprobiert. Auf einer Party gibt es mit Helium gefüllte Ballons, die bekanntlich nicht zum Boden fallen, sondern nach oben steigen. Wenn man dieses Helium aus einem Ballon einatmet verändert das für kurze Zeit die Stimme und man klingt in etwa wie Mickymaus. Aber was macht das Helium mit unserer Stimme, dass sie so verzerrt klingt?

Dazu muss man erst einmal wissen, wie der Klang unserer Stimme überhaupt entsteht. Wir haben bekanntlich in unserem Hals Stimmbänder, die für unsere Stimme verantwortlich sind. Diese Stimmbänder werden durch ausströmende Luft und entsprechende Muskelaktivität ins Schwingen gebracht. Die Schwingung der Stimmbänder überträgt sich auf das darum liegende Medium (im Normalfall Luft) und erzeugt eine Schallwelle. Diese Schallwelle wird durch den Rachen und die Nasenhöhlen noch etwas abgewandelt und verlässt als charakteristische Stimme unseren Mund. In dem Medium Luft, dass eine gewisse Dichte hat, breitet sich dieser Schall immer mit der gleichen Geschwindigkeit aus. Die Schallgeschwindigkeit in Luft beträgt etwa 343 Meter pro Sekunde (1235 km/h). In Helium ist das anders. Helium, als deutlich leichteres Gas, hat eine geringere Dichte als Luft. Das ist ja auch der Grund, warum ein Helium Ballon nach oben steigt. In einem Medium mit geringerer Dichte kann sich aber auch der Schall schneller ausbreiten, da der Widerstand geringer ist. Deshalb liegt die Schallgeschwindigkeit in Helium bei etwa 981 Meter pro Sekunde (3532 km/h), also fast dreimal schneller als in Luft. Höhere Geschwindigkeit bedeutet bei Schall eine höhere Frequenz. Wer schon einmal ein Video oder ein Lied mit Ton vor gespult hat, es also schneller hat laufen lassen, der weiß wie sich das in etwa anhört. Der Ton wird verzerrt aber vor allem wird er höher. Genau das passiert auch mit unserer Stimme, wenn die Lunge und der Halsbereich nicht mit Luft, sondern mit Helium gefüllt ist. Sobald sich das Helium aus der Lunge verflüchtigt hat wird die Stimme wieder normal.

Das Ganze geht auch in die andere Richtung mit einem Gas, das schwerer ist als Luft, wie beispielsweise Schwefelhexafluorid. Die Stimme wird durch das Einatmen dieses Gases tiefer.

In beiden Fällen ist das Einatmen der Gase allerdings nicht ganz ungefährlich. Helium ist da noch etwas weniger kritisch. Man sollte es allerdings nicht übertreiben und nach jedem mal Einatmen eine kleine Pause einlegen. Das Helium verdrängt nämlich den Sauerstoff aus der Lunge. Wenn man es übertreibt, kann das schnell zu einer Unterversorgung bis hin zur Bewusstlosigkeit führen. Schwerere Gas wie Schwefelhexafluorid haben zusätzlich noch die Eigenschaft, dass sie auf Grund ihrer höheren Dichte nicht von selber wieder die Lunge verlassen. Trotz ausatmen können Reste in den unteren Teilen der Lunge bleiben. Was hilft ist tatsächlich ein Kopfstand, so dass das schwere Gas nach unten Richtung Rachen und Mund strömen kann.

 

Quellen:

http://www.pflichtlektuere.com/29/05/2015/wissenswert-warum-klingt-die-stimme-mit-helium-hoeher/

https://www.n-tv.de/wissen/frageantwort/Wieso-veraendert-Helium-die-Stimme-article11599581.html