Schlagwort-Archive: Geschwindigkeit

Was würde passieren, wenn man im Flugzeug die Tür öffnet?

Man kennt diese Szenen aus diversen Hollywood-Blockbustern. Mitten im Flug wird die Tür eines Flugzeugs geöffnet und was folgt, sind in der Regel wild umeinander fliegende Gegenstände und Menschen, die teilweise aus dem Flugzeug raus gezogen werden. Mit etwas Realitätsbezug stellt sich aber die Frage, ob man eine Flugzeugtür während des Fluges überhaupt öffnen kann und wenn doch, was würde passieren?

Zunächst die beruhigende Nachricht. Eine Flugzeugtür in luftiger Höhe während des Fluges zu öffnen ist unmöglich. Dafür gibt es sogar mehrere Gründe. Zunächst einmal wird jede Tür eines Passagierflugzeuges vor dem Start verriegelt, so dass sie ohne Entriegelung des Bordpersonals nicht zu öffnen ist. Aber selbst, wenn das nicht der Fall wäre, so könnte kein Mensch eine Flugzeugtür während des Fluges öffnen. Zumindest nicht bei voller Flughöhe und Geschwindigkeit. In einer Flughöhe von etwa 10.000m herrscht nämlich nur noch ein sehr niedriger Luftdruck. Der Luftdruck in der Kabine wird zwar auch etwas reduziert, liegt allerdings immer noch deutlich höher, da man ansonsten gar nicht mehr ausreichend Sauerstoff atmen könnte. Der Druckunterschied zwischen Kabine und Außenluft sorgt mit enormer Kraft dafür, dass die Tür von innen in die Verankerung gedrückt wird. Dazu kommt noch der „Fahrtwind“. Wer schon einmal bei leichter Fahrt im Auto versucht hat die Tür aufzumachen weiß, dass schon dieser leichte Fahrtwind die Tür wieder zudrückt. Bei der Geschwindigkeit eines Flugzeugs ist dieser Effekt natürlich noch deutlich stärker. Insgesamt wird die Tür damit mit einer Kraft von mehr als einer Tonne in ihre Fassung gedrückt. Das kann definitiv kein Mensch alleine stemmen.

Im hypothetischen Fall, dass die Tür doch einmal geöffnet werden könnte, würde im Bruchteil einer Sekunde der Druckausgleich stattfinden. Die nicht nur sehr dünne, sondern auch sehr kalte Luft von locker mal -50°C in dieser Höhe würde dafür sorgen, dass die Feuchtigkeit der Luft im Flugzeug sofort zu einem Nebel kondensieren würde. Der schlagartige Druckstoß wäre für den menschlichen Körper sehr gefährlich und könnte z.B. das Trommelfell platzen lassen. Aber auch andere Hohlräume in unserem Körper, wie die Lunge oder Nasennebenhöhlen würde sich ausdehnen und starke Schmerzen hervorrufen. Natürlich wäre auch der Sauerstoffgehalt danach viel zu niedrig, allerdings haben alle Flugzeuge hier ja Sauerstoffmasken, die dann automatisch aus der Decke fallen.

Da die Türen aber ja gar nicht aufgehen, sind das alles Szenarien, die Hollywood vorbehalten sind.

 

Quellen:

https://www.liligo.de/reisemagazin/gut-zu-wissen-das-wuerde-passieren-wenn-man-die-flugzeugtuer-waehrend-des-fluges-oeffnen-wuerde-33824.html

https://www.welt.de/wissenschaft/article109474712/Warum-sich-im-Flugzeug-kein-Fenster-oeffnen-laesst.html

Werbung

Warum ändert eine Krankenwagen Sirene beim Vorbeifahren ihren Ton?

Ein Krankenwagen kommt mit Sirene angefahren, alle fahren aus dem Weg und im Moment des Vorbeifahrens passiert etwas merkwürdiges. Der Sirenenton scheint sich zu verändern. Aber warum hört sich ein heranfahrender Krankenwagen mit Sirene anders an, als ein Wegfahrender?

In der Physik wird dieses Phänomen als Doppler-Effekt bezeichnet. Die Tonänderung beruht auf der Tatsache, dass die Wellenlänge eines Tons, der von einem bewegten Objekt aus geht, nicht in alle Richtungen gleich groß ist. In Fahrtrichtung wird die Schallwelle „zusammengestaucht“, entgegen der Fahrtrichtung „entzerrt“. Aber warum ist das so?

Man kann sich eine Schallwelle als eine auf und ab Schwingung vorstellen (wie z.B. ein auf und ab bewegtes Seil). Die Wellenlänge ist der Abstand zweier Hochpunkte bzw. Maxima (oder auch Tiefpunkte). Die Welle wird in ihrem Ursprung, im Falle des Krankenwagens an der Sirene, konstant erzeugt. Das Signal hat im Ursprung damit immer die gleiche Wellenlänge. Von Ursprung aus breitet sich eine Schallwelle bekanntermaßen mit Schallgeschwindigkeit aus. Das ist mit etwa 343 km/h zwar sehr schnell, aber eben nicht so schnell, dass die Geschwindigkeit eines Fahrzeugs keinen Einfluss darauf hat. Ein fahrender Krankenwagen, und damit dessen Sirene, hat sich nämlich in der Zeit vom Aussenden eines Wellenmaximums bis zum nächsten ein kleines Stück vorwärts bewegt. In Fahrtrichtung ist der effektive Abstand der beiden Maxima, die sich in der Luft ausbreiten, dadurch etwas kleiner, als das ursprüngliche Signal. Entgegen der Fahrtrichtung ist es genau andersherum und der Abstand vergrößert sich. Die beiden nachfolgenden Bilder verdeutlichen diesen Effekt. Im ersten Bild der heranfahrende Krankenwagen, im zweiten Bild der Wegfahrende.

Doppler-Effekt heranfahrend Doppler-Effekt wegfahrend

Kürzere Wellenlänge bedeutet bei akustischen Signalen ein höherer Ton. Aus diesem Grund hört sich die Sirene des heranfahrenden Krankenwagens höher an, als die des wegfahrenden Autos. Im Zeitpunkt des Vorbeifahrens hört man dann den Übergang von hoch nach tief.

 

Quellen:

https://www.leifiphysik.de/akustik/akustische-wellen/doppler-effekt

Warum verzerrt Helium unsere Stimme?

Viele haben es sicher schon einmal ausprobiert. Auf einer Party gibt es mit Helium gefüllte Ballons, die bekanntlich nicht zum Boden fallen, sondern nach oben steigen. Wenn man dieses Helium aus einem Ballon einatmet verändert das für kurze Zeit die Stimme und man klingt in etwa wie Mickymaus. Aber was macht das Helium mit unserer Stimme, dass sie so verzerrt klingt?

Dazu muss man erst einmal wissen, wie der Klang unserer Stimme überhaupt entsteht. Wir haben bekanntlich in unserem Hals Stimmbänder, die für unsere Stimme verantwortlich sind. Diese Stimmbänder werden durch ausströmende Luft und entsprechende Muskelaktivität ins Schwingen gebracht. Die Schwingung der Stimmbänder überträgt sich auf das darum liegende Medium (im Normalfall Luft) und erzeugt eine Schallwelle. Diese Schallwelle wird durch den Rachen und die Nasenhöhlen noch etwas abgewandelt und verlässt als charakteristische Stimme unseren Mund. In dem Medium Luft, dass eine gewisse Dichte hat, breitet sich dieser Schall immer mit der gleichen Geschwindigkeit aus. Die Schallgeschwindigkeit in Luft beträgt etwa 343 Meter pro Sekunde (1235 km/h). In Helium ist das anders. Helium, als deutlich leichteres Gas, hat eine geringere Dichte als Luft. Das ist ja auch der Grund, warum ein Helium Ballon nach oben steigt. In einem Medium mit geringerer Dichte kann sich aber auch der Schall schneller ausbreiten, da der Widerstand geringer ist. Deshalb liegt die Schallgeschwindigkeit in Helium bei etwa 981 Meter pro Sekunde (3532 km/h), also fast dreimal schneller als in Luft. Höhere Geschwindigkeit bedeutet bei Schall eine höhere Frequenz. Wer schon einmal ein Video oder ein Lied mit Ton vor gespult hat, es also schneller hat laufen lassen, der weiß wie sich das in etwa anhört. Der Ton wird verzerrt aber vor allem wird er höher. Genau das passiert auch mit unserer Stimme, wenn die Lunge und der Halsbereich nicht mit Luft, sondern mit Helium gefüllt ist. Sobald sich das Helium aus der Lunge verflüchtigt hat wird die Stimme wieder normal.

Das Ganze geht auch in die andere Richtung mit einem Gas, das schwerer ist als Luft, wie beispielsweise Schwefelhexafluorid. Die Stimme wird durch das Einatmen dieses Gases tiefer.

In beiden Fällen ist das Einatmen der Gase allerdings nicht ganz ungefährlich. Helium ist da noch etwas weniger kritisch. Man sollte es allerdings nicht übertreiben und nach jedem mal Einatmen eine kleine Pause einlegen. Das Helium verdrängt nämlich den Sauerstoff aus der Lunge. Wenn man es übertreibt, kann das schnell zu einer Unterversorgung bis hin zur Bewusstlosigkeit führen. Schwerere Gas wie Schwefelhexafluorid haben zusätzlich noch die Eigenschaft, dass sie auf Grund ihrer höheren Dichte nicht von selber wieder die Lunge verlassen. Trotz ausatmen können Reste in den unteren Teilen der Lunge bleiben. Was hilft ist tatsächlich ein Kopfstand, so dass das schwere Gas nach unten Richtung Rachen und Mund strömen kann.

 

Quellen:

http://www.pflichtlektuere.com/29/05/2015/wissenswert-warum-klingt-die-stimme-mit-helium-hoeher/

https://www.n-tv.de/wissen/frageantwort/Wieso-veraendert-Helium-die-Stimme-article11599581.html

Warum fliegt ein angeschnittener Ball eine Kurve? (Magnus-Effekt)

Jeder, der eine Ballsportart selber betreibt oder sportbegeisterter Zuschauer ist hat folgendes schon einmal gesehen: Ein rotierender Ball fliegt in der Luft eine Kurve. Für viele aktive Sportler ist das selbstverständlich aber warum fliegt der Ball eigentlich eine Kurve?

Grund hierfür ist der sogenannte Magnus Effekt, benannt nach dem Wissenschaftler, der den Effekt als Erster physikalisch beschrieben hat. Zunächst betrachten wir mal die Luft direkt an der Oberfläche eines rotierenden Balls. Diese Luft wird durch die Rotation und die dadurch entstehende Reibung in Bewegung versetzt. Der Ball reißt quasi eine kleine Luftschicht mit seiner Kreisbewegung mit. Wenn sich der Ball nun durch die Luft bewegt, wie er das zum Beispiel bei einem Freistoß beim Fußball tut, dann wird er zusätzlich gegen seine Flugrichtung mit Luft umströmt. Diese Luft tritt wiederum in Interaktion mit der dünnen Luftschicht, die von der Rotation des Balls mitgerissen wird. Auf der einen Seite strömt die Umgebungsluft und die dünne Luftschicht in die gleiche Richtung. Auf der anderen Seite allerdings genau entgegengesetzt. Die Folge ist, dass die Strömungsgeschwindigkeit auf der einen Seite erhöht, auf der Anderen aber reduziert wird. Bei strömenden Gasen (und Flüssigkeiten) gilt jetzt folgendes: Je höher die Strömungsgeschwindigkeit, desto geringer der Druck an dieser Stelle. Das hat irgendwann ein gewisser Daniel Bernoulli festgestellt und in der sehr bekannten und allgemein gültigen Bernoulli-Gleichung festgehalten. Für den rotierenden Ball bedeutet das, dass auf der einen Seite eine höherer Druck herrscht als auf der Anderen. Die Folge ist, dass der Ball eine Kraft in Richtung des geringeren Drucks erfährt und zur Seite gedrückt wird. Da dies während der ganzen Flugphase des Balls der Fall ist, fliegt dieser eine Kurve. Wie stark der Ball abgelenkt wird hängt vor allem von der Rotationsgeschwindigkeit ab.

In vielen Ballsportarten wird dieser Effekt oft ausgenutzt und jetzt weißt du auch warum er auftritt und sogar wie er heißt.

Ein sehr cooles Video demonstriert diesen Effekt mit einem Basketball, der mit und ohne Spin von einem Staudamm geworfen wird. Schaut´s euch mal an:

 

Quellen:

http://www.wissen.de/raetsel/warum-fliegt-der-eckball-eine-kurve

https://lp.uni-goettingen.de/get/text/3773