Schlagwort-Archive: Reflexion

Flimmern über heißen Oberflächen

Jetzt in der warmen Jahreszeit wieder häufig zu beobachten: Ein merkwürdiges Flimmern auf Asphalt, schwarzen Fensterbänken oder anderen heißen Oberflächen. Hast du dich schon einmal gefragt woher das kommt? Hier gibt es die Erklärung.

Zuerst einmal benötigt es dafür eine heiße Oberfläche. Und zwar eine, die deutlich wärmer ist, als die Luft darüber. Diese Luft erwärmt sich im Bereich direkt über der heißen Oberfläche, z.B. Asphalt. (Es funktioniert natürlich auch mit anderen Wärmequellen) Wärmere Luft steigt immer nach oben, da mit steigender Temperatur die Dichte der Luft sinkt und sie somit leichter wird. Die aufsteigende Luft macht dadurch wieder Platz für „frische“ Luft, die auf die Oberfläche strömen kann und sich wiederum erhitzt. Außerdem kühlt die warme Luft beim Aufsteigen langsam wieder ab, so dass sich im Bereich über dem Asphalt mehrere Luftschichten unterschiedlicher Temperatur bilden. Die Aufwärtsbewegung dieser Schichten erfolgt aber in der Regel nicht gleichmäßig, sondern wild durcheinander. In der Technik nennt man eine solche Strömung „turbulent“. Wenn nun Licht, das später in unser Auge fallen soll, durch diese turbulente Strömung aus verschieden warmen Luftschichten fällt, wird es in jeder Luftschicht unterschiedlich gebrochen. (Für eine ausführliche Erklärung des Begriffes Brechung von Licht siehe: Wie entsteht eigentlich ein Regenbogen? ) Dieses „Wirrwarr“ aus gebrochenem Licht sehen wir dann als Flimmern, das aufzusteigen scheint, da sich die Luftschichten ja weiterhin nach oben bewegen.

Das gleiche Phänomen ist übrigens auch für die scheinbar nasse Straße verantwortlich. Licht kann nämlich an einer Grenze zwischen zwei unterschiedlich warmen Luftschichten auch reflektiert werden. (Für Begriffserklärung Reflexion siehe ebenfalls: Wie entsteht eigentlich ein Regenbogen? Was wir auf dem Boden als Pfütze sehen, ist eigentlich die Spiegelung des Himmels.

Im Allgemeinen nennt man eine solche Spieglung „Fata Morgana“. Dabei kann nicht nur der Himmel, sondern auch andere Gegenstände oder ganze Bergketten gespiegelt werden. Allerdings sollte für eine gut sichtbare Fata Morgana kein Wind wehen, um die Luftschichten möglichst nicht zu verwirbeln. Ist das der Fall, so entsteht eine deutliche Grenze zwischen einer kühleren und einer wärmeren Luftschicht, an der sich das Licht dann spiegeln kann.

grafik_fatamorgana01

In der Abbildung sieht man die Grenzschicht zwischen den Luftschichten (schwarzer Strich). Der Baum wird an dieser Schicht gespiegelt. Das Licht ist mit grauen Pfeilen gekennzeichnet. Aus Sicht des Betrachters, sieht es so aus, als wäre der Baum an der Stelle des grünen Punktes. In Wirklichkeit ist er deutlich weiter weg. Der Baum kann zwar bei einer einfachen Spiegelung auf dem Kopf stehen, doch ist das oft nicht so genau zu erkennen.

So kann es in der Wüste vorkommen, dass Nomaden Wasserstellen, Gebirgszüge oder sogar Städte an Stellen vermuten, an denen weit und breit nichts ist. Eine gespiegelte Stadt muss natürlich existieren, sie kann aber noch viel weiter weg sein als vermutet.

 

Quellen:

https://www.helles-koepfchen.de/lichterscheinungen/luftspiegelung-fata-morgana.html

https://physik.cosmos-indirekt.de/Physik-Schule/Hitzeflimmern

Werbung

Wie entsteht eigentlich ein Regenbogen?

Jeder hat schon einmal einen Regenbogen gesehen und sich an seiner Farbenpracht erfreut. Gerade weil einem Regenbogen meist ein Regenschauer vorausgeht und mit der wieder auftauchenden Sonne auf der einen, und der schwarzen Wolkenwand auf der anderen Seite ein wundervolles Lichtspiel entsteht. Doch wie genau entsteht eigentlich ein Regenbogen? Wie kann aus hellem, blendendem Sonnenlicht und einer Weltuntergang ähnlichen Regenfront ein so farbenfrohes Gebilde entstehen?

Die Antwort gibt uns die Optik, ein Teilbereich der Physik. Die Gesetze der Optik erklären unter Anderem Phänomene wie Spiegelung, Brechung oder Streuung – alles Begriffe, die man schon einmal gehört hat – aber was steckt dahinter?

Um den Regenbogen zu verstehen, muss man erst wissen, was genau eigentlich Sonnenlicht ist. Licht im Allgemeinen ist elektromagnetische Wellen. Ähnlich wie auch Radiowellen oder andere Funksignale. Entscheidend für die Eigenschaften einer elektromagnetischen Welle ist deren Wellenlänge, also der Abstand, nachdem die Schwingung der Welle wieder den gleichen Punkt erreicht hat, wie der Startpunkt. Man kann sich das genau wie eine auf und ab Bewegung von beispielsweise Wasserwellen oder einem in Schwingung gebrachten Seil vorstellen.

.winkel_funktionen_

In dieser Abbildung ist eine solche Welle zu sehen. Die hier eingezeichnete Periodendauer entspricht der Wellenlänge. Dieser Bereich wiederholt sich unendlich oft in der Welle. Die Amplitude ist ein Maß für die Intensität, ist hier aber erst mal uninteressant.

Das Spektrum der Wellenlängen einer elektromagnetischen Welle reicht von Nanometern ( ein Millionstel Millimeter) bis mehrere 100 Kilometer. Der Bereich, den wir als sichtbares Licht wahrnehmen liegt etwa zwischen 400 und 800 Nanometer.

So viel zu der grundsätzlichen Erklärung was Licht denn eigentlich ist.

Das Phänomen, das hauptsächlich für die Entstehung eines Regenbogens verantwortlich ist, ist die Brechung von Licht. Brechung kann immer dann auftreten, wenn Licht von einem Medium in ein Anderes über eine Grenzfläche übergeht. Ein Beispiel ist der Übergang von Luft nach Glas oder auch Wasser. Bei dem Durchdringen einer solchen Grenzfläche kann das Licht, je nach Bedingungen und Eigenschaften, seine Richtung ändern. Vielleicht hast du dich auch schon einmal gewundert, warum man, wenn man mit dem Kopf unter Wasser ist, nicht einfach so nach draußen schauen kann, wenn man nicht gerade senkrecht nach oben schaut. Auch hier tritt eine Brechung des Lichts ein. Das Licht außerhalb des Wassers erreicht die Wasseroberfläche und läuft dann aber nicht geradlinig weiter, sondern ändert seine Richtung und gelangt so nicht mehr in unser Auge.

lichtbrechung-dichter-duenner

Hier nochmal eine Veranschaulichung der Brechung von Licht an der Grenzfläche zwischen Luft und Wasser.

Der Brechungswinkel, der in der Abbildung mit β gekennzeichnet ist, hängt von der Wellenlänge des einfallenden Lichts ab. Ein Lichtstrahl aus blauem Licht (ca. 450nm) wird also anders gebrochen als ein Lichtstrahl rotes Licht ( ca. 700nm).

Um nun zu verstehen, warum aus Sonnenlicht ein Regenbogen aus mehreren Farben werden kann, muss man wissen, dass Sonnenlicht eine Überlagerung des gesamten Lichtspektrums ist. D. h. Sonnenlicht besteht im Prinzip aus allen Farben, deren Überlagerung uns aber weiß bzw. farbneutral vorkommt.

Wenn also Sonnenlicht von der einen Seite auf die dunkle „Regenwand“ auf der anderen Seite trifft, wird das Licht der Sonne in jedem einzelnen Regentropfen gebrochen, wobei der Wellenlängen abhängige Brechungswinkel das bis dato weisliche Licht in ein Spektrum aus Farben auffächert. Dieses breite Band an Farben sehen wir dann als Regenbogen. Die Reihenfolge der Farben in einem Regenbogen (violett, blau, grün, gelb, orange, rot) ist folglich auch immer die Selbe.

Eine Frage bleibt allerdings noch offen: Angenommen das Sonnenlicht kommt aus Sicht des Betrachters von rechts, dann ist die Regenwand auf der linken Seite. Wie kommt nun das Licht, das von rechts nach links verläuft wieder zum Betrachter in der Mitte zurück?

Hier findet ein weiteres Phänomen der Optik statt. Die Reflexion oder Spiegelung. Reflexion findet genau wie die Brechung an Grenzflächen zwischen verschiedenen Medien statt. Im Gegensatz zur Brechung gilt hier allerdings der bekannte Satz: “ Einfallswinkel gleich Ausfallswinkel“ egal für welche Wellenlänge. Was passiert also nachdem der Lichtstrahl der Sonne auf einen Regentropfen getroffen ist? An der ersten Grenzschicht von Luft nach Wasser wird das Licht gebrochen und in seine Farben auf gespaltet. Das nun regenbogenfarbene Licht läuft weiter durch den Tropfen durch, bis es auf die zweite Grenzschicht trifft. Das Ende des Regentropfens also ein Übergang von Wasser nach Luft. Hier wird ein Teil des auftreffenden Lichts reflektiert, also zurückgeworfen. Dieser Teil ist das Licht, dass wir dann als Regenbogen sehen können.

Wenn du jetzt das nächste Mal einen Regenbogen siehst und dich jemand fragt, wie das eigentlich möglich ist, kannst du ihm oder ihr dieses Phänomen ausführlich erklären.