Schlagwort-Archive: Sonne

Wie entsteht eine (totale) Mondfinsternis?

Diesen Freitag (27.7.2018) gibt es mal wieder ein astronomisches Großereignis. Eine totale Mondfinsternis. Vielleicht hast du auch schon davon gehört, es wird nämlich die längste in diesem Jahrhundert. Aber was genau ist eigentlich eine (totale) Mondfinsternis und wie entsteht sie?

Da der Mond im wesentlichen nur aus Gestein besteht ist er nicht in der Lage selber zu leuchten. Wir können ihn nur deswegen sehen, weil er von der Sonne angestrahlt wird und das Licht der Sonne reflektiert. Der Mond kreist ja bekanntlich um die Erde, wodurch auch die Mondphasen entstehen und wir den Mond nicht immer komplett sehen können. Je nachdem wie er im Verhältnis zur Erde und zur Sonne steht, sehen wir nur eine Sichel, bei Vollmond den ganzen Mond, oder bei Neumond auch mal gar nichts. Eine Mondfinsternis kann nur bei Vollmond entstehen, da der Mond von der Erde aus gesehen dann genau auf der gegenüberliegenden Seite zur Sonne steht. Wenn die Neigung der Rotationsebene des Mondes dann noch stimmt, kann es sein, dass der Mond durch den Schatten der Erde läuft. Ist das der Fall entsteht eine Mondfinsternis. Eine totale Mondfinsternis bedeutet, das wirklich der komplette Mond vom Erdschatten bedeckt ist und nicht nur ein Teil, wie bei einer partiellen Mondfinsternis. Je nachdem wie die Mond-Erde-Sonne-Konstellation zu diesem Zeitpunkt ist, kann die Mondfinsternis nur von einem bestimmten Teil der Erde aus beobachtet werden. Im Falle der Finsternis am Freitag ist das auch in Europa der Fall, wobei die Finsternis von Deutschland aus betrachtet bereits vor Mondaufgang einsetzt, so dass dieser beim Aufgehen schon teilweise verdeckt ist.

Der Mond ist übrigens auch während der Finsternis zu sehen, da ein Teil des Sonnenlichts von der Erdatmosphäre gestreut und auf den Mond geworfen wird. Allerdings ist dieses Licht viel schwächer, so dass der Mond nur schwach zu sehen ist. Meist erscheint der Mond dann leicht rötlich, weshalb er auch als Blutmond bezeichnet wird.

Die Finsternis beginnt in Deutschland etwa um 19:15, wobei wie bereits erwähnt, der Mond erst kurz vor 21:00Uhr aufgeht und dann schon teilweise verfinstert ist. Um 21:30 beginnt die Hauptphase, die dann bereits zu sehen ist. Die Maximale Verdunklung ist um 22:21 erreicht. Für weiter Uhrzeiten und Phasen der Mondfinsternis siehe:

https://www.timeanddate.de/finsternis/mond/2018-juli-27

Eine Mondfinsternis kann übrigens, im Gegensatz zur Sonnenfinsternis, gefahrlos mit bloßem Auge beobachtet werden. Die nächste totale Mondfinsternis ist dann erst im Januar 2019.

 

Quelle:

https://www.timeanddate.de/finsternis/totale-mondfinsternis

Werbung

Wie entstehen Hoch- und Tiefdruckgebiete?

Sie sind in jedem Wetterbericht enthalten: Hoch- und Tiefdruckgebiete. Sie bekommen sogar Namen. Jedes Jahr ändert sich, ob Tiefdruckgebiete männliche Namen und Hochdruckgebiete weibliche  bekommen oder anders herum. Aber wie entstehen eigentlich Gebiete unterschiedlichen Drucks?

Dazu muss als erstes gesagt werden, dass die Entstehungen durch viele teils sehr komplexe Wettermechanismen hervorgerufen werden. Ich will hier bloß ein einfaches grundlegendes Modell erklären.

Wenn sich die Luft in Bodennähe z.B. durch Sonneneinstrahlung aufwärmt, steigt sie auf Grund geringerer Dichte nach oben. Wenn das großflächig passiert, dann sinkt in diesem Areal der Druck, es entsteht also ein Tiefdruckgebiet. Der durchschnittliche Luftdruck in Bodennähe beträt 1013 hPa (hektopascal) also 1,013 bar. In Tiefdruckgebieten herrscht ein Luftdruck etwa zwischen 980 und 1000 hPa. Beim Aufsteigen kühlt sich die Luft ab und damit steigt auch die relative Luftfeuchtigkeit (vgl. Wie entsteht ein Gewitter? oder Die eingefrorene Windschutzscheibe). Es kommt also zu Wolkenbildung oder sogar Regen. Außerdem entstehen Winde, da Luft von Gebieten höheren Drucks in das Tiefdruckgebiet strömt um das Druckgefälle auszugleichen. Deshalb verbindet man Tiefdruckgebiete meist mit eher schlechtem Wetter. Die Luftmassen, die in einem Tiefdruckgebiet aufsteigen müssen aber ja irgendwo wieder runterkommen. An diesen Stellen entsteht dann ein Hochdruckgebiet durch den genau umgekehrten Effekt. Auch die Effekte der Wolkenbildung werden hier umgekehrt, sodass in Hochdruckgebieten meist eher schönes Wetter herrscht. Hochdruckgebiete haben etwa einen Luftdruck von 1040 bis 1065 hPa.

Wie gesagt ist das bloß eine sehr grobe Erklärung der Entstehung von Hoch- und Tiefdruckgebieten, aber das Prinzip lässt sich an Hand dieser Erklärung darstellen.

 

Quellen:

https://www.goruma.de/erde-und-natur/meteorologie/hoch-und-tiefdruckgebiete

https://content.meteoblue.com/de/meteoscool/grosswetterlagen/hoch-und-tiefdruckgebiete

Warum sind Wolken weiß oder auch grau?

Weiße Wolken in einem blauen Himmel. So stellt man sich einen traumhaften Sommertag vor. Aber warum sind Wolken eigentlich weiß oder im Fall von Regenwolken auch grau?

Dazu müssen wir erst einmal verstehen, was die Farbe weiß eigentlich ist. Sie ist nämlich eine Überlagerung aller Farben des Spektrums der Sonne. Sonnenlicht ist somit auch weißes Licht. Genau dieses Sonnenlicht ist es auch, dass den Wolken ihre Farbe gibt. Fällt das Sonnenlicht nämlich auf eine Wolke, die ja bekanntlich aus sehr vielen, sehr kleinen Wassertropfen besteht, so wird das weiße Licht an diesen Tropfen in alle Richtungen gestreut. Die Wolke sieht also erst einmal von allen Richtungen weiß aus. Was passiert aber in einer Regenwolke, so dass sie grau bis fast schwarz erscheint?

Das Licht, das an den Tropfen in der Wolke gestreut wird muss natürlich trotzdem noch irgendwie durch die Wolke zu unserem Auge gelangen, damit wir es sehen können. Je dichter eine Wolke wird und je größer die Wassertropfen darin werden, desto unwahrscheinlicher ist es, dass ein Lichtstrahl eine Wolke komplett durchdringt und von unserem Auge gesehen werden kann. Die Intensität des Lichts, das Regenwolken durchdringt ist also deutlich abgeschwächt. Das Resultat ist eine graue bis hin zu einer fast schwarzen Wolke.

Bildlich kann man sich das Ganze etwa wie folgt vorstellen: Die Tröpfchen in einer Wolke fungieren wie sehr kleine Spiegel, die das eintreffende Licht in eine zufällige Richtung reflektieren (streuen). Bis zu einer gewissen Wolkendichte ist es sehr wahrscheinlich, dass zumindest ein Teil des eintreffenden Lichts trotz mehrfacher Spiegelung am Ende durch die Wolke gelangt. Je mehr Wassertropfen in einer Wolke sind und je größer diese werden, desto unwahrscheinlicher ist der Fall, dass ein Strahl die Wolke durchdringt und die Wolke erscheint grau.

Warum hat der Februar nur 28 bzw. 29 Tage?

Jetzt ist wieder März und damit der Februar dieses Jahr schon wieder um. Ging ganz schön schnell oder?! Klar der Februar hat ja auch nur 28 Tage und nicht 30 oder 31 wie alle Anderen. Aber warum ist das eigentlich so und warum ausgerechnet der Februar?

Dazu ein kurzer Exkurs zur Entstehung unseres heutigen Kalenders. Dafür muss man weit in der Zeit zurück reisen, denn bereits die alten Ägypter haben mit Hilfe ihrer astronomischen Kenntnisse ein Jahr auf 365 Tage festgelegt. Das ist etwa die Zeit, die die Erde benötigt um einmal die Sonne zu umkreisen. Die Einteilung in Monate basiert ebenfalls auf einem astronomischen Phänomen. Der Mond schafft es nämlich in einem Jahr fast zwölfmal die Erde zum umrunden. Also wurde bereits weit vor Christus das Jahr in zwölf Monate eingeteilt. Wenn man jetzt 365 Tage auf zwölf Monate aufteilen will, sind das etwa 30,5 Tage pro Monat. Also gab man mehr oder weniger abwechselnd den Monaten 30 bzw. 31 Tage. Da insgesamt 7 Monaten 31 Tage zugesprochen wurden, blieben am Schluss für einen Monat nur noch 28 Tage übrig. So weit so gut aber warum hat es hier ausgerechnet den Februar erwischt?

Tatsächlich war es damals so, dass das Jahr nicht wie heute mit dem Januar begann, sondern mit dem März. Zu sehen ist das heute teilweise noch an den Namen der Monate. Die Namen September, Oktober, November und Dezember sind von den römischen Zahlen 7,8,9 und 10 abgeleitet. Startend beim März als erster Monat entspricht das der Reihenfolge der Monate. Der Februar war somit der letzte Monat im Jahr und war damit der Monat, dem schlichtweg die „restlichen Tage“ der Jahres zugesprochen wurden – also nur noch 28. Auch die Kalenderreform von Julius Cäsar, nach der wir uns heute noch richten und die den Januar als ersten Monat festlegte, änderte nichts an dieser Tatsache. Das ist also der Grund, warum der Februar auch heute noch weniger Tage hat als die Anderen.

 

Quellen:

https://www.swr.de/blog/1000antworten/antwort/4116/warum-hat-der-februar-weniger-tage-als-die-anderen-monate/

https://www.noz.de/deutschland-welt/gut-zu-wissen/artikel/1020147/warum-hat-der-februar-nur-28-tage

Warum werden schwarze Oberflächen heißer als weiße?

In den jetzt kommenden heißen Tagen merkt man es wieder extrem. Dunkle oder schwarze Oberflächen erwärmen sich in der Sonne viel stärker als helle. Das weiß eigentlich jeder aber hast du dich auch schon einmal gefragt warum das so ist?

Um das zu verstehen muss man erst einmal wissen, wie Farben überhaupt entstehen und warum ein Gegenstand schwarz oder vielleicht weiß ist.

Alles beginnt bei einer Lichtquelle. Diese Quelle sendet ein Lichtspektrum aus, also eine Überlagerung von elektromagnetischen Wellen verschiedener Wellenlängen. Im besten Fall ist das die Sonne. Das Spektrum der Sonne deckt nämlich den ganzen sichtbaren Bereich des Lichts ab. Das bedeutet, dass das uns weiß erscheinende Licht der Sonne eine Überlagerung aller Farben ist (siehe auch „Wie entsteht ein Regenbogen„). Damit wissen wir schon einmal, dass die Farbe Weiß dann entsteht, wenn alle Farben überlagert unser Auge erreichen. Schwarz ist dann das genaue Gegenteil. Schwarz sehen wir wenn gar kein Licht bzw. keine elektromagnetische Strahlung im sichtbaren Bereich in unser Auge fällt.

Von der Lichtquelle nun zu der Farbe eines Gegenstandes. Wenn beispielsweise Sonnenlicht auf eine uns rot erscheinende Oberfläche fällt, dann wird von dieser Oberfläche das Licht aller Wellenlängen absorbiert bis auf das rote. Absorbiert bedeutet, dass der Gegenstand die Energie des Lichts aufnimmt. Der in diesem Fall rote Teil des Lichts wird reflektiert und kann so unser Auge erreichen. Die Oberfläche sieht für uns also rot aus. Der zusätzliche Effekt der Absorption ist, das sich die Oberfläche durch die Aufnahme der Energie erwärmt. Je heller die Farbe, desto mehr wird von dem auftreffenden Licht reflektiert. Bis hin zu einer weißen Oberfläche, die alle Strahlung reflektiert und eine Überlagerung des kompletten Spektrums das Auge erreichen kann.

Mit diesem Wissen kann man sich auch erklären, warum ein schwarzer Gegenstand heißer wird als ein weißer. Der Schwarze absorbiert die komplette Strahlung, der Weiße reflektiert alles. Und nur durch die Absorption kann sich ein Gegenstand erwärmen.

Wie funktioniert Sonnencreme?

So langsam macht sich doch der Sommer und vor allem die Sonne bei uns breit. Die Tage werden immer wärmer und die Sonne immer intensiver. Um sich trotzdem in die Sonne legen zu können greifen wir zur Sonnencreme um nicht am nächsten Tag mit einem ordentlichen Sonnenbrand aufzuwachen. Aber wie funktioniert eigentlich eine Sonnencreme? Wie kann sie uns vor der gefährlichen Strahlung der Sonne schützen?

Die Meisten wissen, dass die UV-Strahlung der Sonne diejenige ist, die Sonnenbrand und andere Hautschäden verursacht und dass Sonnencremes über einen UV-Schutz verfügen. Vielleicht hast du dich ja auch schon einmal gefragt, wie dieser UV-Schutz eigentlich funktioniert.

Es gibt zwei Mechanismen, die in Sonnencremes verwendet werden, um uns vor UV-Strahlung zu schützen. Einen physikalischen Effekt und einen chemischen. Für den physikalischen Effekt werden der Sonnencreme sehr kleine Teilchen aus Metalloxiden wie Titanoxid oder Zinkoxid zugegeben. Diese Teilchen, die beim Einschmieren auf der Hautoberfläche haften bleiben, wirken wie winzige Spiegel. Die Spiegel reflektieren einen Großteil des auf die Haut fallenden UV-Lichts und sorgen dadurch dafür, dass die Strahlung gar nicht erst in die Haut eindringen kann. Für den chemischen Effekt werden der Creme synthetische Stoffe beigemischt, die nach dem auftragen in die Haut eindringen und dort einen Schutzfilm bilden. In diesem Schutzfilm wird die Strahlung nicht reflektiert, sondern unschädlich gemacht. Die UV-Strahlung wird von den Stoffen absorbiert und in für uns unschädliche Infrarotstrahlung, also Wärme, umgewandelt.

Die meisten Sonnencremes kombinieren beide Effekte um möglichst effizient zu wirken. Ein 100%iger Schutz vor UV-Strahlung ist aber nie gewährleistet. Unsere Haut hat aber ja auch noch einen eigenen Schutzmechanismus, nämlich die Hautbräune. Einen Artikel zum Thema „Warum werden wir von der Sonne braun“ findest du auf diesem Link. Dort ist auch der Unterschied zwischen UV-A und UV-B Strahlung beschrieben.

Wenn du dich jetzt das nächste Mal mit einer Sonnencreme einschmierst weißt du auch was diese bewirkt und vor allem wie sie es tut.

 

Quellen:

http://www.wdr.de/tv/kopfball/sendungsbeitraege/2013/0512/sonnenmilch.jsp

http://www.pflichtlektuere.com/26/07/2013/wissenswert-so-funktioniert-sonnencreme/

https://www.welt.de/wissenschaft/article108370049/So-funktioniert-die-Chemie-der-Sonnencreme.html

Warum müssen manche Menschen niesen wenn sie von der Sonne geblendet werden?

Kennst du das? Man verlässt ein eher schwach beleuchtetes Gebäude und draußen scheint die Sonne. Man ist geblendet und kann die Augen kaum offen halten. Oft kommt zu dem Geblendet sein noch ein plötzlicher Niesanfall. Falls dir das bekannt vorkommt gehörst du zu den etwa 20-25% der Menschen mit dem so genannten ACHOO- Syndrom (Autosomal Dominant Compelling Helio-Ophthalmic Outburst of Sneezing), was so viel bedeutet wie: „Autosomal, dominant vererbter Niesausbruch, der durch eine Reizung der Augen durch die Sonne hervorgerufen wird“. Oft auch bekannt als Photischer Niesreflex.

Aber wie entsteht dieser Niesanfall?

Wie der Name schon sagt, geht man von einer Vererbung des Syndroms aus. Bei betroffenen Menschen liegt der Sehnerv sehr nah am Drillingsnerv, welcher für die Reizübertragung der Nasenschleimheute verantwortlich ist. Wenn nun der Sehnerv durch das Blenden der Sonne stark gereizt wird, können die elektrischen Impulse auf den Drillingsnerv übertragen werden. Unser Gehirn erhält also die Information, dass die Nasenschleimheute gereizt sind. Um eventuelle Fremdkörper aus der Nase zu entfernen, wird ein Niesreflex aktiviert und wir müssen niesen.

Bei diesem Phänomen übrigens im Schnitt 2-3 mal. So lange, bis die Pupillen sich etwas verengt haben und der Sehnerv durch das Blenden nicht mehr so stark gereizt wird.

Polarlichter – Wo kommen die eigentlich her?

Die meisten kennen sie nur aus Filmen oder von Bildern. Aber selbst dort machen sie einen spektakulären Eindruck – Polarlichter.

In diesem Artikel will ich kurz und knapp erklären, was diese Polarlichter sind und wie sie entstehen.

Der Auslöser für dieses Phänomen ist die Sonne. Von ihr werden ständig geladene Teilchen in alle Richtungen abgestoßen. Geladene Teilchen bedeutet hauptsächlich Elektronen (negativ geladen) und Protonen (positiv geladen). Diese Flut an Teilchen ist allgemein bekannt als Sonnenwind.

Polarlichter entstehen dann, wenn dieser Sonnenwind auf die Atmosphäre der Erde trifft. Da die Erde aber ein starkes Magnetfeld besitzt, das in der Lage ist die geladenen Teilchen um die Erde herum zu lenken, kommt der Sonnenwind meist nur in Polarnähe mit der Erdatmosphäre in Berührung. Hätte die Erde kein Magnetfeld, könnten wir jeden Tag und überall immer Polarlichter sehen.

Die geladenen Teilchen des Sonnenwindes leuchten aber nicht selber in den schönen Farben. Hierfür sind Sauerstoff und Stickstoffatome aus der Erdatmosphäre verantwortlich. Wenn diese nämlich vom Sonnenwind getroffen werden, werden sie ionisiert. Das heißt sie werden selber zu entweder positiv oder negativ geladenen Teilchen. Wenn nun ein positives Sauerstoff Atom auf ein negatives trifft verbinden sie sich. Bei diesem Vorgang wird Licht ausgesendet. Im Falle des Sauerstoffs ist das rotes Licht, bei Stickstoff blaues oder violettes. Grünes Licht entsteht, wenn ein geladenen Sauerstoff Atom mit anderen, nicht Sauerstoff Teilchen, interagiert.

Da die Sonnenaktivität, also die Menge an ausgesandtem Sonnenwind nicht konstant ist, tritt das Phänomen Polarlicht zu unterschiedlichen Zeiten unterschiedlich stark auf. Bei sehr starker Aktivität kann es sogar in unseren Breiten auftauchen. Dies ist allerdings sehr selten.

Warum werden wir von der Sonne braun?

Der Sommer ist da und so langsam erkennt man, wer bereits öfter in der Sonne war. Im Freibad sieht man auch, wer vielleicht eher mit T-Shirt in der Sonne war und dadurch einen Übergang von braun zu hell auf der Haut am Arm hat.

Doch warum werden wir eigentlich braun, wenn wir für längere Zeit in der Sonne sind?

Verantwortlich ist dafür die ultraviolette Strahlung der Sonne (UV- Strahlung). Das Licht, das von der Sonne auf die Erde fällt, enthält neben dem für uns sichtbaren Bereich der Farben auch noch UV- Strahlung und Infrarot Strahlung. Beide Bereiche sind für das menschliche Auge nicht sichtbar. Infrarotstrahlung wird auch Wärmestrahlung genannt. Diese Strahlung können wir zwar nicht direkt sehen, aber sehr wohl spüren. Sie ist für die wärmende Wirkung der Sonnenstrahlen verantwortlich.

Die UV- Strahlung spüren wir nicht direkt, sie hat allerdings trotzdem starke Auswirkungen auf uns. Bei zu intensiver oder zu langer Bestrahlung der Haut mit UV- Strahlen bekommen wir einen Sonnenbrand und die Haut wird nachhaltig geschädigt, was im schlimmsten Fall zu Hautkrebs führen kann.

Bei moderater Bestrahlung wird unsere Haut dagegen braun, was auf einen körpereigenen Schutzmechanismus zurückzuführen ist. Die Haut erkennt die UV- Bestrahlung und produziert das Pigment Melanin. Dieses ist in der Lage UV- Strahlen zu absorbieren und bildet eine Art Schutzschicht um die Hautzellen. Je mehr Melanin vorhanden ist, desto brauner wird die Haut. Folglich ist dunklere Haut auch unempfindlicher als helle Haut. Zumindest in Bezug auf Sonnenbrandgefahr.

Grundsätzlich gilt: Die Haut „merkt“ sich jeden Sonnenstrahl, den sie abbekommt. Man sollte also immer darauf achten sich ausreichend zu schützen und nicht zu lange in der Sonne zu bleiben. Ein gutes Mittel sind hier natürlich Sonnencremes. Dabei ist darauf zu achten, dass diese sowohl UV-A als auch UV-B Schutz bieten. Es gibt nämlich zwei verschiedene Arten der UV- Strahlung. Die gefährlichere ist die UV-B Strahlung. Diese ist sowohl für die Bildung des Melanins als auch für den Sonnenbrand mit all seinen langfristigen Folgen verantwortlich. UV-A Strahlung kann allerdings die Hautalterung vorantreiben und ist somit auch so gering wie möglich zu halten.

Wenn man sich das merken will gibt es eine kleine Eselsbrücke:

UV-A —> HautAlterung

UV-B —> SonnenBrand

Wenn du also das nächste Mal ein Sonnenbad nimmst oder bei perfektem Wetter auf der im Freibad unterwegs bist, weißt du, dass dein Körper dabei ist Melanin zu produzieren um die Haut zu schützen. Die Farbe des Melanins, also braun, ist hier reiner Zufall. Ein Glück also das Melanin nicht blau ist 😉

 

Quellen:

https://www.warum-wieso.de/mensch/warum-wird-man-in-der-sonne-braun/

https://www.euromelanoma.de/jsp_public/cms2/index.jsp?did=1918

Wie entsteht eigentlich ein Regenbogen?

Jeder hat schon einmal einen Regenbogen gesehen und sich an seiner Farbenpracht erfreut. Gerade weil einem Regenbogen meist ein Regenschauer vorausgeht und mit der wieder auftauchenden Sonne auf der einen, und der schwarzen Wolkenwand auf der anderen Seite ein wundervolles Lichtspiel entsteht. Doch wie genau entsteht eigentlich ein Regenbogen? Wie kann aus hellem, blendendem Sonnenlicht und einer Weltuntergang ähnlichen Regenfront ein so farbenfrohes Gebilde entstehen?

Die Antwort gibt uns die Optik, ein Teilbereich der Physik. Die Gesetze der Optik erklären unter Anderem Phänomene wie Spiegelung, Brechung oder Streuung – alles Begriffe, die man schon einmal gehört hat – aber was steckt dahinter?

Um den Regenbogen zu verstehen, muss man erst wissen, was genau eigentlich Sonnenlicht ist. Licht im Allgemeinen ist elektromagnetische Wellen. Ähnlich wie auch Radiowellen oder andere Funksignale. Entscheidend für die Eigenschaften einer elektromagnetischen Welle ist deren Wellenlänge, also der Abstand, nachdem die Schwingung der Welle wieder den gleichen Punkt erreicht hat, wie der Startpunkt. Man kann sich das genau wie eine auf und ab Bewegung von beispielsweise Wasserwellen oder einem in Schwingung gebrachten Seil vorstellen.

.winkel_funktionen_

In dieser Abbildung ist eine solche Welle zu sehen. Die hier eingezeichnete Periodendauer entspricht der Wellenlänge. Dieser Bereich wiederholt sich unendlich oft in der Welle. Die Amplitude ist ein Maß für die Intensität, ist hier aber erst mal uninteressant.

Das Spektrum der Wellenlängen einer elektromagnetischen Welle reicht von Nanometern ( ein Millionstel Millimeter) bis mehrere 100 Kilometer. Der Bereich, den wir als sichtbares Licht wahrnehmen liegt etwa zwischen 400 und 800 Nanometer.

So viel zu der grundsätzlichen Erklärung was Licht denn eigentlich ist.

Das Phänomen, das hauptsächlich für die Entstehung eines Regenbogens verantwortlich ist, ist die Brechung von Licht. Brechung kann immer dann auftreten, wenn Licht von einem Medium in ein Anderes über eine Grenzfläche übergeht. Ein Beispiel ist der Übergang von Luft nach Glas oder auch Wasser. Bei dem Durchdringen einer solchen Grenzfläche kann das Licht, je nach Bedingungen und Eigenschaften, seine Richtung ändern. Vielleicht hast du dich auch schon einmal gewundert, warum man, wenn man mit dem Kopf unter Wasser ist, nicht einfach so nach draußen schauen kann, wenn man nicht gerade senkrecht nach oben schaut. Auch hier tritt eine Brechung des Lichts ein. Das Licht außerhalb des Wassers erreicht die Wasseroberfläche und läuft dann aber nicht geradlinig weiter, sondern ändert seine Richtung und gelangt so nicht mehr in unser Auge.

lichtbrechung-dichter-duenner

Hier nochmal eine Veranschaulichung der Brechung von Licht an der Grenzfläche zwischen Luft und Wasser.

Der Brechungswinkel, der in der Abbildung mit β gekennzeichnet ist, hängt von der Wellenlänge des einfallenden Lichts ab. Ein Lichtstrahl aus blauem Licht (ca. 450nm) wird also anders gebrochen als ein Lichtstrahl rotes Licht ( ca. 700nm).

Um nun zu verstehen, warum aus Sonnenlicht ein Regenbogen aus mehreren Farben werden kann, muss man wissen, dass Sonnenlicht eine Überlagerung des gesamten Lichtspektrums ist. D. h. Sonnenlicht besteht im Prinzip aus allen Farben, deren Überlagerung uns aber weiß bzw. farbneutral vorkommt.

Wenn also Sonnenlicht von der einen Seite auf die dunkle „Regenwand“ auf der anderen Seite trifft, wird das Licht der Sonne in jedem einzelnen Regentropfen gebrochen, wobei der Wellenlängen abhängige Brechungswinkel das bis dato weisliche Licht in ein Spektrum aus Farben auffächert. Dieses breite Band an Farben sehen wir dann als Regenbogen. Die Reihenfolge der Farben in einem Regenbogen (violett, blau, grün, gelb, orange, rot) ist folglich auch immer die Selbe.

Eine Frage bleibt allerdings noch offen: Angenommen das Sonnenlicht kommt aus Sicht des Betrachters von rechts, dann ist die Regenwand auf der linken Seite. Wie kommt nun das Licht, das von rechts nach links verläuft wieder zum Betrachter in der Mitte zurück?

Hier findet ein weiteres Phänomen der Optik statt. Die Reflexion oder Spiegelung. Reflexion findet genau wie die Brechung an Grenzflächen zwischen verschiedenen Medien statt. Im Gegensatz zur Brechung gilt hier allerdings der bekannte Satz: “ Einfallswinkel gleich Ausfallswinkel“ egal für welche Wellenlänge. Was passiert also nachdem der Lichtstrahl der Sonne auf einen Regentropfen getroffen ist? An der ersten Grenzschicht von Luft nach Wasser wird das Licht gebrochen und in seine Farben auf gespaltet. Das nun regenbogenfarbene Licht läuft weiter durch den Tropfen durch, bis es auf die zweite Grenzschicht trifft. Das Ende des Regentropfens also ein Übergang von Wasser nach Luft. Hier wird ein Teil des auftreffenden Lichts reflektiert, also zurückgeworfen. Dieser Teil ist das Licht, dass wir dann als Regenbogen sehen können.

Wenn du jetzt das nächste Mal einen Regenbogen siehst und dich jemand fragt, wie das eigentlich möglich ist, kannst du ihm oder ihr dieses Phänomen ausführlich erklären.