Schlagwort-Archive: Temperatur

Was ist der Unterschied zwischen ober- und untergärigem Bier?

Die Biergartensaison steht wieder vor der Tür. Bei der guten Auswahl in fränkischen Biergärten fällt die Entscheidung oft schwer. In Beschreibungen von Bieren auf der Karte oder auch auf der Flasche stehen oft die Begriffe obergärig oder untergärig dabei. Aber was genau bedeutet das eigentlich und wo liegt der Unterschied?

Die wohl wichtigste Zutat bei der Herstellung von Bier ist die Hefe. Sie wandelt enthaltenen Zucker in Alkohol und Kohlensäure um. Aber Hefe ist nicht gleich Hefe. Es gibt sehr viele verschiedene Hefen, die sich allgemein in zwei Hauptgruppen einteilen lassen: Obergärige und untergärige Hefen. Je nachdem welche Sorte bei der Bierherstellung verwendet wurde, wird auch das Bier als obergärig oder untergärig bezeichnet. Der Hauptunterschied zwischen den beiden Arten liegt in der Temperatur, bei der die Hefen aktiv sind. Obergärige Hefen arbeiten in etwa bei Raumtemperatur (15-20 °C). Untergärige Hefen sind hingegen bei Temperaturen von 4-9 °C am aktivsten. Ihren Namen haben obergärige Hefen daher, dass sie während des Brauprozesses sogenannte Sprossenverbände bilden. Diese Sprossenverbände sind etwas größer und werden durch die entstehende Kohlensäure an die Oberfläche, also nach oben befördert. Untergärige Hefen bilden diese Verbände nicht, so dass die deutlich kleineren Hefeteile nach unten absinken und sich am Boden des Braukessels ablagern.

Typische obergärige Biere sind übrigens Weißbiere, Pale Ale oder Alt Bier. Untergärige Sorten sind unter anderem Pils, Lager oder das klassische Helle.

Wenn beim nächsten Biergarten Stammtisch also mal wieder jemand fragt, was denn eigentlich der Unterschied zwischen obergärigen und untergärigen Bieren ist, kannst du jetzt mit „fundiertem“ Wissen glänzen.

 

Quellen:

https://www.hopfenhelden.de/was-ist-obergaerig-und-untergaerig/

https://www.bier.de/wissen/was-ist-der-unterschied-zwischen-obergarigem-und-untergarigem-bier/

Werbung

Wie entstehen Kondensstreifen?

Achtung Spoileralarm: Nein Kondensstreifen sind keine Chemtrails!!!

Auch wenn sich diese Verschwörungstheorie hartnäckig hält, haben Kondensstreifen in keinster Weise etwas mit dem absichtlichen Versprühen von irgendwelchen Chemikalien zu tun. Aber wie genau entstehen sie dann und warum können sie so unterschiedlich aussehen?

Bei der Verbrennung von Kerosin in den Triebwerken eines Flugzeugs entsteht hauptsächlich Wasserdampf und CO2. Da Kerosin aber ähnlich wie Benzin oder Diesel kein Reinstoff ist, sondern aus vielen verschiedenen Substanzen besteht, entstehen durch die unsaubere Verbrennung einzelner Bestandteile auch Rußpartikel. Feinste Wasserdampfteilchen sind erst einmal unsichtbar. Die Rußpartikel dienen allerdings als Anlagerungsstellen für den Wasserdampf, der dort bei den in der Flughöhe herrschenden Temperaturen kondensiert. Man spricht von Kondensationskeimen. Natürlich lagert sich nicht nur ein Wasserteilchen an ein Rußpartikel. In sehr kurzer Zeit bilden sich Tropfen große Ansammlungen, die bei den dort herrschenden Temperaturen in der Regel gleich zu Kristallen gefrieren. Sobald die Gebilde eine gewisse Größe erreicht haben wird an ihnen das Licht so stark gestreut, dass es für uns weiß erscheint (vgl.“Warum sind Wolken weiß„). Dadurch, dass die Triebwerke konstant laufen, können dann die bekannten Kondensstreifen hinter den Flugzeugen entstehen.

Wie lang sich ein Kondensstreifen hält oder auch ob überhaupt einer entsteht ist von der Luft abhängig, durch die das Flugzeug gerade fliegt. Ausschlaggebend ist vor allem die dort vorherrschende Luftfeuchtigkeit. Ist die Luft zu trocken, lösen sich die Wasserteilchen sehr schnell auf und man sieht gar nichts. Bei sehr hoher Luftfeuchtigkeit können Kondensstreifen auch mal über mehrere Stunden am Himmel bleiben bis sie durch Luftströmungen in ein Gebiet trockenerer Luft geschoben werden. Je nach Luftbewegung können Kondensstreifen quasi jede Form annehmen, vorausgesetzt sie bleiben lange genug erhalten.

 

Quellen:

http://www.airliners.de/warum-chemtrails-kondensstreifen-antworten-cockpit/34692

https://weather.com/de-DE/wissen/wetterlexikon/news/kondensstreifen-so-entstehen-die-kunstlichen-wolken

Wie wird alkoholfreies Bier hergestellt?

Wer kennt das nicht? Man muss noch mit dem Auto fahren oder will aus anderen Gründen keinen Alkohol trinken, hat aber trotzdem Lust auf ein schönes Bier… Die Auswahl an alkoholfreien Bieren ist mittlerweile so groß, dass man meistens sogar die Wahl zwischen mehreren Sorten hat. Über den Geschmack von alkoholfreien Bieren wird oft gestritten, aber wie werden diese Biere eigentlich hergestellt?

Tatsächlich gibt es mehrere Verfahren zur Herstellung von alkoholfreien Bieren, die alle ihre Vor- und Nachteile haben. Man kann die Verfahren in zwei Überkategorien einteilen. Nämlich die Verfahren, bei denen bei der Herstellung der Biere gar nicht erst so viel Alkohol entsteht und diese, bei denen der Alkohol im Nachhinein entfernt wird.

In Deutschland darf ein als alkoholfrei deklariertes Bier maximal 0,5 Vol.% Alkohol enthalten. Die meisten Brauereien versuchen auch gar nicht auf 0 % zu kommen, da Alkohol ein wichtiger Geschmacksträger ist und die für den Biergeschmack wichtigen Aromen somit besser zur Geltung kommen können.

Doch zurück zu den Herstellungsverfahren. In der ersten Kategorie, in der bei der Herstellung der Biere nur sehr wenig Alkohol entsteht, gibt es die Möglichkeit der unterdrückten oder der abgebrochenen Gärung. Der Alkohol entsteht bei der Bierherstellung durch die Zugabe von Hefe, welche den enthaltenen Zucker in Alkohol und Kohlensäure umwandelt. Man kann die Hefe also so lange arbeiten lassen, bis ein Alkoholgehalt von 0,5 Vol.% entstanden ist und die Aktivität der Hefe dann durch kurzzeitiges, starkes Erhitzen beenden (abgebrochene Gärung). Da die Hefe für die Umsetzung aber auch eine gewisse Energie benötigt, kann der ganze Gärprozess auch bei niedrigen Temperaturen durchgeführt werden, was die Aktivität der Hefe deutlich herabsetzt und somit insgesamt gar nicht so viel Alkohol entsteht (unterdrückte Gärung). Mittlerweile wurden auch Hefesorten gezüchtet, die schon bei geringem Alkoholgehalt von selber deaktiviert werden, so dass der Gärprozess gar nicht mehr aktiv beeinflusst werden muss.

Die Verfahren der zweiten Kategorie setzten auf die Entfernung des entstandenen Alkohols aus dem gebrauten Bier. Das kann z.B. über eine Vakuum Rektifikation geschehen, bei der durch Zuführen von Energie der Alkohol selektiv aus dem Bier verdampft wird. Auch Membranverfahren wie die Umkehrosmose oder die Pervaporation können zum Einsatz kommen. Hier wird das Bier mit Hilfe von Membranen gefiltert, die für Alkohol und Wasser durchlässig sind, nicht aber für die anderen Inhaltsstoffe des Bieres. Das übergebliebene „Bierkonzentrat“ wird dann wieder so lange mit Wasser versetzt, bis der Alkoholgehalt auf jeden Fall unter 0,5 % liegt.

Alle genannten Verfahren haben ihre Vorteile. Biere, die mit unterdrückter oder abgebrochener Gärung hergestellt werden, sind in der Regel eher süß und fruchtig. Dafür weisen Biere, die komplett vergoren wurden und denen der Alkohol im Nachhinein entzogen wurde eher den typischen Biergeschmack auf. Aus diesem Grund hat, genau wie auch beim alkoholhaltigen Bier, jeder seine favorisierten Sorten und die Diskussionen über den Geschmack von alkoholfreiem Bier können bei jeder Gelegenheit von neuem geführt werden.

 

Quellen:

https://www.stoertebeker.com/de_de/alkoholfreies-bier—wie-funktioniert-das-

https://www.hopfenhelden.de/alkoholfreies-bier/

https://craftbeer-revolution.de/lexikon/alkoholfreies-bier

Warum kühlt ein Ventilator?

So langsam werden die Tage wieder wärmer und der Ein oder Andere macht sich schon wieder Sorgen im Sommer in einem heißen Raum zu sitzen ohne sich zwischendurch abkühlen zu können. Ein einfacher Ventilator kommt da oft gelegen um sich etwas kühle Luft zuwehen zu lassen. Aber warum kühlt ein Ventilator überhaupt? Schließlich enthält er keinerlei tatsächlich kühlende Komponenten.

In der Tat ändert ein Ventilator erst einmal rein gar nichts an der Temperatur der Luft, die sich beispielsweise in einem Raum befindet. Er bringt sie lediglich in Bewegung. Diese Bewegung führt zu einem schnelleren Luftaustausch an der Stelle, wo der Ventilator hin bläst – zum Beispiel unsere Haut. Ist die Umgebungsluft kühler als unsere Haut, so wird durch den Luftaustausch der kühlende Effekt der Luft verstärkt. Die von der Haut aufgewärmte Luft wird weggeblasen und neue kühle Luft kann zur Haut hin gelangen. Ist die Umgebungsluft allerdings schon wärmer als die Hauttemperatur, so fällt dieser Effekt weg. Ein Ventilator ist trotzdem noch in der Lage eine kühlende Wirkung hervorzurufen, aber wie geht das?

Der Luftaustausch hat auch noch einen anderen Effekt. Wenn wir schwitzen verdunstet der Schweiß auf der Haut. Für diese Verdunstung wird Energie benötigt. Diese Energie zieht der Schweiß in Form von Wärme aus der Haut. Das Resultat ist, die Haut kühlt sich ab. Schweiß verdunstet aber nur solange die Luft direkt in Hautnähe nicht zu feucht ist. Sie kann nämlich nur eine gewisse Menge an Feuchtigkeit (hier verdunstender Schweiß) aufnehmen. Durch den Luftaustausch wird immer frische, trockenere Luft zur Haut hin transportiert. Das heißt durch den Ventilator wird der natürliche Kühlmechanismus des Menschen verstärkt. Somit kann dieser auch bei Temperaturen oberhalb unserer Hauttemperatur für eine angenehme Kühlung sorgen.

Natürlich funktioniert das Ganze nur bis zu einer bestimmten Lufttemperatur. Wer in einer Sauna schon einmal einem Luftzug ausgesetzt war, zum Beispiel durch ein wedelndes Handtuch, der weiß, dass der Effekt hier umgekehrt wird und der Luftaustausch hier eine erhitzende Wirkung hat. Zu viele Ventilatoren im Dauerbetrieb sind übrigens auch nicht gut, da der Motor eines Ventilators Wärme abgibt und somit die Raumluft sogar aufwärmen kann. Sobald man die Ventilatoren dann ausschaltet ist es wärmer also vorher ohne Ventilatoren.

Wärmt uns Alkohol von innen?

Die Weihnachtszeit ist zwar schon lange vorbei, doch die kältesten Wintertage stehen jetzt erst an. Bei diesen kalten Temperaturen will man jede Gelegenheit nutzen sich aufzuwärmen. Da kommt ein Glühweinstand doch gerade recht, denn so ein Glühwein wärmt ja von innen. Doch ist das wirklich so?

Tatsächlich ist die wärmende Wirkung eines Glühweins nur von sehr kurzer Dauer. Da der Glühwein eine höhere Temperatur hat als unser Körper, gibt dieser natürlich erst einmal etwas Wärme an unseren Köper ab. Bei einer angenommenen Trinktemperatur von ca. 50°C ist das im Vergleich zur Körpertemperatur (36°C) allerdings nicht übermäßig viel. Dazu kommt, dass der Glühwein mit der Zeit ja auch abkühlt, wodurch diese Differenz noch geringer wird. Diese kurze Erwärmung unseres Körpers „von innen“ hält somit nicht lange an. Ein zweiter Faktor, der dafür sorgt, dass es uns vorkommt als würde der Glühwein wärmen, ist der darin enthaltene Alkohol. Alkohol hat eine Blutgefäß erweiternde Wirkung. Das heißt die Gefäße, die das Blut bis in die äußersten Stellen unseres Körpers (Hände, Beine Gesicht) transportieren weiten sich und lassen damit mehr Blut an genannte Stellen. Mehr Bluttransport bedeutet auch mehr Wärmetransport, da das Blut ja von warmen Körperinneren kommt. Was wir wahrnehmen ist eine leichte Erwärmung beispielsweise im Gesicht. Was wir nicht merken ist, dass diese Wärme im Körperinneren jetzt fehlt und über die äußersten Gefäße an die Umgebung abgegeben wird. Insgesamt verliert der Körper somit mehr Wärme an die Umgebung, was folglich zu einer Auskühlung führt.

Das kurzzeitige Wärmegefühl ist also auf längere Sicht schlecht für den Wärmehaushalt unseres Körpers. In Extremfällen kann das sogar gefährlich werden. Bei übermäßigem Konsum von Alkohol nimmt der Körper durch die berauschende Wirkung des Alkohols den Wärmeverlust des Körpers nicht mehr wahr und es kann bei langem Aufenthalt in sehr kalter Umgebung zu Unterkühlungen kommen.

Eine Tasse Glühwein ist da natürlich noch kein Problem und kann ja wie oben beschrieben auch kurzzeitig wärmen. Bei höherem Alkoholkonsum (der natürlich grundsätzlich nicht zu raten ist) sollte man im Winter allerdings möglichst bald ein warmes Wohnzimmer aufsuchen um Unterkühlungen zu vermeiden.

 

Quellen:

https://www.kenn-dein-limit.de/aktuelles/artikel/waermt-alkohol-wirklich-von-innen/

Auch interessant zu diesem Thema:

Was macht Alkohol in unserem Körper?

Warum macht Wind alles kälter?

Die Temperaturen pendeln gerade wieder um den Gefrierpunkt. Die Nächte sind teils bitter kalt, die Sonne gewinnt allerdings schon wieder an Stärke wenn sie mal raus kommt. Einen großen Einfluss auf das Wetter und die Temperaturen im Winter hat aber auch noch ein anderes Naturphänomen: Der Wind.

Wenn wir im Winter nach draußen gehen und uns entscheiden müssen welche Jacke, Mütze oder Handschuhe wir anziehen, schauen wir als erstes auf das Thermometer. Oft merkt man draußen dann aber, dass es doch kälter ist als gedacht. Ein leichter Wind kann unser Temperaturempfinden stark beeinflussen. Auf vielen Wetterportalen wird daher mittlerweile neben der Lufttemperatur auch noch eine gefühlte Temperatur angegeben. Hier wird unter anderem der Effekt, den der Wind auf uns hat mit einberechnet. Wenn wir nach draußen gehen bilden wir nämlich durch unsere deutlich höhere Körpertemperatur eine Art wärmere Schutzschicht um uns herum aus. Die Luft in direkter Körpernähe wird erwärmt und hält damit die kältere Luft drum herum davon ab uns noch weiter abzukühlen. Kleidung versucht möglichst viel dieser warmen Luft am Körper zu halten. Wind hingegen bewirkt genau das Gegenteil. Er bläst die körpernahe, wärmere Luft von uns weg, so dass neue kalte Luft an den Körper gelangen kann. Das Resultat ist, dass es uns kälter vorkommt, wenn es zu niedrigen Temperaturen auch noch windig ist. Diesen Effekt nennt man übrigens auch „Windchill-Effekt“

Gleiches gilt natürlich auch für den Sommer und warme Lufttemperaturen. Im Sommer wird die kühlende Wirkung des Windes bei sehr heißen Temperaturen allerdings oft als angenehm empfunden.

 

Quellen:

https://www.watson.ch/Wissen/Winter/839421571-Fuer-alle–die-heute-schon-draussen-waren–oder-es-noch-vor-haben—10-eiskalte-Kaeltefakten

Wie entsteht ein Gewitter?

Im letzten Beitrag ging es um die Entstehung eines Tornados in einer Gewitterwolke. Diese Woche geht es darum, wie denn eine solche Gewitterwolke und die zu einem Gewitter gehörigen Phänomene wie Blitz und Donner entstehen.

Als Grundvoraussetzung wird warme, feuchte Luft in Bodennähe benötigt. Das ist der Hauptgrund, warum Gewitter meist im Sommer stattfinden. Diese warme Luft steigt auf Grund geringerer Dichte nach oben. Auf dem Weg nach oben kühlt sie sich ab. Ab einem gewissen Punkt fängt die Feuchtigkeit in der Luft an zu kondensieren und es bildet sich eine Wolke. Bei der Kondensation des Wassers wird allerdings weitere Wärme frei, die die Luftmasse weiter nach oben steigen lässt. Das Ganze passiert bis zu einem Höhenbereich in dem es so kalt ist, dass die Wassertropfen anfangen zu gefrieren. Die Eiskristalle fallen dann in der Wolke nach unten, können aber durch den in der Wolke herrschenden Aufwind wieder nach oben transportiert werden. Dabei wachsen sie immer weiter an bis sie letztendlich so groß sind, dass der Aufwind sie nicht mehr mitreißen kann und sie als Hagel, Graupel oder große Regentropfen auf die Erde fallen. Durch das ständige Hoch und Runter der Eiskristalle und Wassertropfen in der Wolke lässt sich nicht verhindern, dass diese auch aneinander stoßen und reiben. Dabei können von den aufsteigenden Tropfen Elektronen an die herabfallenden Eiskristalle abgegeben werden. Durch eine hohe Häufigkeit dieses Prozesses in der Wolke entsteht ein Ladungsfeld mit einem Elektronenüberschuss am unteren Ende (Minuspol) und einer Elektronenarmut am Kopf der Wolke (Pluspol). Diese Ladungen in der Wolke interagieren nun auch mit der Erdoberfläche. Hier gilt das allgemeine physikalische Gesetz: „Gegensätze ziehen sich an, Gleiches stößt sich ab“. Die negativ geladene Unterseite der Wolke erzeugt dadurch eine positive Ladung auf der darunter liegenden Erdoberfläche. Die Elektronen werden dort von den Elektronen der Wolke abgestoßen und es entsteht auch hier eine Elektronenarmut (Pluspol). Zwischen dem Minuspol der Wolke, der durch weitere Ladungstrennung in der Wolke immer stärker wird, und dem Pluspol auf der Erdoberfläche herrscht nun eine Spannung. Diese Spannung kann übrigens mehrere hundert Millionen Volt betragen. Wenn die Spannung groß genug ist kann sie sich in Form eines Blitzes entladen. Die kritische Spannung die überwunden werden muss liegt bei etwa 170.000 Volt pro Meter Abstand zwischen Wolke und Erdoberfläche. Blitze können allerdings auch zwischen Wolken oder innerhalb einer Wolke entladen werden. Hierfür sind etwas geringere Spannungen nötig. Deshalb ereignet sich ein Großteil der Blitze in den Wolken und nur ein geringer Teil geht bis auf die Erde.

Ein Blitz ist in der Lage die Luft auf extrem hohe Temperaturen zu erwärmen. Die Luft unmittelbar um den Blitzkanal wird schlagartig auf bis zu 30.000°C erhitzt. Die erhitzte Luft breitet sich dabei explosionsartig aus und bildet eine Druckwelle. Diese Druckwelle vernehmen wir als Donner wenn sie unser Ohr erreicht. Durch verschieden Einflüsse auf dem Weg zu uns kann der Donnerton in eine längeres „Grollen“ verzerrt werden.

Das faszinierende Phänomen Gewitter beinhaltet natürlich noch viel mehr Details aber ich denke mit dem oben Beschriebenen kann man sich ungefähr ein Bild davon machen was sich in und um einer Gewitterwolke herum abspielt.

 

Quellen:

http://www.weltderphysik.de/thema/hinter-den-dingen/klima-und-wetter/gewitterblitze/

https://www.nela-forscht.de/2011/06/08/wie-entsteht-ein-gewitter/

Was ist der Treibhauseffekt und wie beeinflusst er unsere Erde?

Zu Zeiten eines amerikanischen Präsidenten, der den vom Menschen verursachten Klimawandel dementiert wird wieder viel über den so genannten Treibhauseffekt diskutiert. Doch was genau ist eigentlich dieser Treibhauseffekt und was bewirkt er?

Zuerst sollte man dazu sagen, dass der Treibhauseffekt nichts grundsätzlich schlechtes ist. Im Gegenteil: Ohne den Treibhauseffekt wäre ein Leben auf der Erde undenkbar.

Aber nun dazu, was dieser Effekt überhaupt ist. Die Atmosphäre, die unsere Erde umschließt besteht aus vielen verschiedenen Gasen. In Bodennähe ist das Hauptsächlich Stickstoff (ca. 78%), Sauerstoff (ca. 21%) und das Edelgas Argon (ca. 1%). Dazu kommen sehr geringe Anteile von Kohlendioxid (ca. 0,04%), Methan und Ozon. Natürlich gibt es noch viele andere Gase, die in Spuren in unserer Atmosphäre vorhanden sind, die Anteile sind allerdings verschwindend gering. Zusätzlich zu den Gasen befindet sich aber auch noch Wasserdampf in der Atmosphäre. Dieser entsteht durch Verdunstung in Meeren, Seen und Flüssen. Die für den Treibhauseffekt ausschlaggebenden Anteile sind genau dieser Wasserdampf, Kohlendioxid, Methan und Ozon, wobei der Wasserdampf den größten Anteil trägt. Diese Gase haben nämlich die Eigenschaft, das sie für kurzwellige Strahlung, also Strahlung mit einer geringen Wellenlänge, durchlässig sind. Langwellige Strahlung wird von ihnen hingegen absorbiert. Doch was hat das jetzt mit dem Treibhauseffekt zu tun?

Die Strahlung, die von der Sonne bei uns ankommt liegt zum größten Teil im Wellenlängenbereich des sichtbaren Lichts (ca. 400-800 Nanometer). Diese recht kurzwellige Strahlung kann mehr oder weniger ungehindert durch die Atmosphäre auf die Erdoberfläche gelangen. Durch das Auftreffen dieser Strahlung erwärmt sich die Erdoberfläche. Die Erde kann dann wiederum Strahlung in Richtung Weltall abgeben. Da die Wellenlänge der abgegebenen Strahlung von der Temperatur des „Strahlers“ abhängt und die Erde ja deutlich kälter ist als die Sonne, entsteht hier eine andere Strahlung. Nämlich sehr langwellige Infrarotstrahlung (ca. 10.000 Nanometer). Für eine Strahlung dieser Wellenlänge sind die oben genannten Treibhausgase nur sehr bedingt durchlässig. Die Strahlung wird von ihnen absorbiert und bleibt damit in der Atmosphäre der Erde. Durch diese Mechanismen stellt sich auf der Erde eine Gleichgewichtstemperatur ein.

Ohne den Treibhauseffekt wäre es deutlich kälter auf der Erde, da die ganze Wärme der Sonne von der Erde wieder an das Weltall abgegeben würde. Leben auf der Erde wäre dann kaum vorstellbar. Allerdings nimmt die Konzentration der Treibhausgase in unserer Atmosphäre vor allem durch den vom Menschen verursachten Ausstoß von Kohlendioxid zu. Durch diesen Anstieg der Konzentration sinkt der Anteil der Strahlung, die von der Erde wieder an das Weltall abgegeben werden kann. Dadurch steigt folglich auch die (Gleichgewichts-) Temperatur auf der Erde. Diesen Effekt des zusätzlichen Treibhauseffektes nennt man auch „anthropogener Treibhauseffekt„, also vom Mensch hervorgerufen.

Wenn jetzt demnächst mal wieder über den Treibhauseffekt diskutiert wird, weißt du um was es genau geht und dass dieser Effekt nicht grundsätzlich schlecht ist.

Warm/Kalt – Warum fühlt sich Metall kühler an als Holz?

Man befindet sich in einem Raum, in dem eine Zimmertemperatur von etwa 20°C herrscht. Man könnte also meinen, dass alles in diesem Raum die gleiche Temperatur angenommen hat. Wenn man nun allerdings einen Gegenstand aus Holz anfasst und danach etwas metallenes berührt, kommen einem die beiden Sachen nicht gleich warm vor. Das Metall scheint deutlich kühler zu sein als das Holz. Doch ist das wirklich so?

Tatsächlich sind beide Dinge gleich warm. Wie soll es auch anders sein? Beide Gegenstände liegen in einem Raum bei annähernd konstanter Temperatur. Man kann sich gut vorstellen das mit der Zeit alle Gegenstände die Zimmertemperatur annehmen. Etwas Wärmeres würde sich nach und nach abkühlen und ein kaltes Getränk beispielsweiße würde sich bis auf die Temperatur der Luft erwärmen.

Aber warum kommt uns nun das Metall kühler vor als das Holz?

Die Antwort liegt in der Wärmeleitung. Unsere Haut hat etwa eine Temperatur von 30°C. Wenn wir einen Gegenstand anfassen, der kälter ist als die Haut, kann die Wärme von der Haut auf diesen Gegenstand übergehen. Die unterschiedlichen Wärmeübergangsmechanismen habe ich bereits im Artikel zur „eingefrorenen Windschutzscheibe“ erklärt (https://lustaufwissen.wordpress.com/2015/04/28/die-eingefrorene-windschutzscheibe/ ). Da hier ein direkter Kontakt vorliegt spricht man von Wärmeleitung.

Wärmeleitung kann aber nicht nur zwischen zwei verschiedenen Dingen stattfinden, sondern auch innerhalb eines Gegenstandes (hier Holz bzw. Metall). Diese Wärmeleitung ist aber nicht in jedem Stoff gleich gut. Metalle haben in der Regel eine sehr gute Wärmeleitfähigkeit. Wärme, die an einer Stelle an das Metall gelangt, kann also sehr schnell durch das ganze Metallstück geleitet werden und verteilt sich darin. Holz besitzt im Gegensatz dazu eine eher schlechte Wärmeleitfähigkeit.

Wenn man nun mit dem warmen Finger ein Stück Metall berührt, geht die Wärme vom Finger in das Metall über. Dort wird die Wärme aber sofort abgeführt und verteilt. Die Berührungsstelle nimmt also nicht die Temperatur des Fingers an sondern bleibt kühl und entzieht dem Finger somit immer mehr Wärme. Das Resultat ist, dass sich das Metall tatsächlich wie 20° anfühlt. Im Vergleich zu den 30° der Haut also kühl. Beim Holz funktioniert das Ableiten der Wärme nicht so gut. Die Berührungsstelle nimmt also die Temperatur des Fingers an und das Holz kommt einem dann wärmer vor als das Metall. Das Ganze passiert natürlich so schnell, dass man beim Holz nicht merkt wie es sich aufwärmt.

Dinge, die uns bei gleicher Temperatur kühler vorkommen sind folglich gar nicht kühler, sie besitzen nur eine bessere Wärmeleitfähigkeit.

Gleiches gilt natürlich auch für Temperaturen oberhalb der Hauttemperatur. Bei heißem Metall kann nach dem Übergang der Wärme an der Berührungsstelle die Wärme aus dem restlichen Teil des Metalls schnell nachfließen und wieder in die Haut übergehen. Bei Holz dauert das länger. Folglich sind Verbrennungen an Metall deutlich gravierender als die, die bei Berührung mit Holz entstehen. Auch wenn Holz und Metall die gleiche Temperatur haben.