Schlagwort-Archive: Wasser

Darf man mit vollem Bauch ins Wasser?

Auch wenn die Badesaison sich schon dem Ende neigt, möchte ich heute über etwas schreiben, dass jeder schon einmal von seinen Eltern gehört hat, sich selber gedacht hat oder vielleicht auch seinen Kindern schon gesagt hat. Es ist sogar in den offiziellen Baderegeln der DLRG niedergeschrieben: „Nicht mit vollem (oder leeren) Bauch ins Wasser gehen“. Aber was ist eigentlich dran an dieser Aussage?

Tatsächlich haben sich auch mit dieser Frage bereits vor vielen Jahren Wissenschaftler befasst. Die grundlegende Theorie hinter dieser Aussage besagt, dass nach einer ordentlichen Mahlzeit der Körper gezielt Blut in die Magenregion schickt, um den Verdauungsprozess zu beschleunigen und die Nährstoffe aus der Nahrung möglichst schnell zu verteilen. Entsprechend sind andere Muskelregionen, wie Beine und Arme, die man zum Schwimmen braucht, tendenziell unterversorgt.

In einer Versuchsreihe haben Forscher mehrere Probanden etwa gleichen Alters zu unterschiedlichen Zeiten nach einer Mahlzeit eine vorgegebene Strecke schwimmen lassen. Das Ergebnis war, dass die Wartezeit nach dem Essen keinerlei Einfluss auf die Schwimmleistung hat. Die Erklärung der Wissenschaftler lautet, dass der Körper zwar nach dem Essen die Verdauungsregion stärker durchblutet, es dadurch im Normalfall aber zu keinem Blutmangel in anderen Regionen des Körpers kommt, so dass die körperliche Leistung aufrecht erhalten bleibt.

Das einzig unangenehme an einem vollem Bauch im Wasser ist, dass der Wasserdruck zusätzlich auf den Magen drückt, was ein erhöhtes Völlegefühl hervorrufen kann. Bei Personen mit Herz-Kreislauf Problemen wird allerdings weiterhin davor gewarnt, direkt nach dem Essen ins Wasser zu gehen. Ganz einfach aus dem Grund, dass ihre Blutversorgung schneller aus dem Gleichgewicht gebracht werden kann, als bei gesunden Menschen.

Schlimmer als ein überfüllter Bauch ist dagegen ein komplett leerer Bauch. Wenn lange nichts gegessen wurde, kann es beim Schwimmen, wie bei allen anderen sportlichen Aktivitäten, zur Unterzuckerung kommen und die Leistungsfähigkeit des Körpers kann rapide abnehmen.

 

Quellen:

https://www.spiegel.de/gesundheit/ernaehrung/schadet-essen-vor-dem-schwimmen-mythos-oder-medizin-a-1108337.html

https://www.monte-mare.de/de/ratgeber_schwimmen_nach_dem_essen_q_a-4629.html

Werbung

Bringt es etwas Eier abzuschrecken?

Ein Frühstücksei, das sich nicht schälen lässt, ist echt nervig. Angeblich soll es ja helfen, die Eier direkt nach dem Kochen mit kaltem Wasser abzuschrecken. Aber bringt das wirklich was?

Tatsächlich bringt es nicht so viel, wie oft behauptet wird. Es sind nämlich mehrere Faktoren dafür verantwortlich, ob sich ein Ei gut schälen lässt oder nicht. In erster Linie ist das das Alter des Eis. Frische Eier lassen sich in der Regel schlechter schälen, als bereits mehrere Tage gelagerte. Aus eigener Erfahrung kann ich aber sagen, dass auch das nicht zu 100% verlässlich ist. Ich habe auch schon Eier direkt vom Bauern aus dem Stall geholt und sie ließen sich gut schälen.

Aber zurück zum Abschrecken. Was bewirkt das eigentlich?

Wird ein Ei aus kochendem Wasser geholt, hat es in etwa die Temperatur des Wassers angenommen, also vermutlich etwas unter 100 °C. Wenn jetzt das kalte Wasser aus der Leitung (ca. 20°C) auf das Ei trifft, zieht sich die Schale und die darunter liegende Haut zusammen. Bei ganz frischen Eiern, bei denen die Haut noch sehr stark mit dem Eiweiß verbunden ist, passiert dadurch leider gar nichts. Hat sich die Haut allerdings an manchen Stellen schon etwas gelöst, so kann sie sich durch das Zusammenziehen auch an anderen Stellen ablösen und das Abschrecken hat in diesem Fall tatsächlich einen positiven Effekt auf das „Schälverhalten“. Die Wahrscheinlichkeit, dass ein Ei gerade in so einem Zustand ist, ist allerdings relativ gering. In den meisten Fällen ist die Haut entweder schon komplett gelöst oder eben gar nicht. Beides bedeutet, dass Abschrecken keinen Einfluss hat.

Einen Vorteil hat Abschrecken aber noch. Wenn weich gekochte Eier aus dem heißen Wasser genommen werden, garen sie durch die hohe Eigentemperatur auch außerhalb des Wassers weiter. Um den perfekten Garpunkt zu erhalten (vorausgesetzt man ist Eierkoch-Profi und weiß genau wann das Ei raus muss), muss das Ei abgeschreckt werden, um durch die Abkühlung das Weitergaren zu verhindern.

Wenn man hart gekochte Eier länger lagern will, sollte man aber auf Abschrecken verzichten. Durch das schlagartige Abkühlen können feine Risse in der Schale des Eis entstehen. Diese Risse erleichtern es Keimen in das Ei einzudringen und die Haltbarkeit wird deutlich reduziert.

 

Quellen:

https://www.stern.de/genuss/essen/eier-abschrecken—bringt-kaltes-wasser-ueberhaupt-etwas–6415752.html

https://eatsmarter.de/ernaehrung/ernaehrungsmythen/muss-eier-abschrecken

Warum ist man im Wasser leichter als in der Luft?

Im Sommer im Freibad oder Pool, im Winter im Hallenbad oder der Therme – jeder von uns geht doch ab und zu gerne mal ins Wasser. Was dabei auffällt ist, mit jedem Schritt, den man weiter ins Wasser geht, fühlt man sich leichter. Ist man erst einmal komplett im Wasser hat man fast das Gefühl von Schwerelosigkeit. Aber warum ist das so? Herrscht im Wasser etwa eine andere Schwerkraft?

Nein, natürlich nicht. Die Schwerkraft wirkt im Wasser genauso, wie in der Luft. Grund für die scheinbare Schwerelosigkeit im Wasser ist eine andere Kraft, die sogenannte Auftriebskraft. Die Schwerkraft wirkt ja bekanntermaßen nach unten, genauer gesagt zum Mittelpunkt der Erde hin. Die Auftriebskraft hingegen wirkt in genau die entgegengesetzte Richtung, nämlich nach oben. Sie wird dadurch hervorgerufen, dass man, wenn man sich im Wasser befindet, einen Teil des Wassers verdrängt. Das Volumen des Körpers im Wasser verdrängt das Wasser, dass vorher ja noch an dieser Stelle war. Die Auftriebskraft wirkt diesem Verdrängen entgegen und möchte den Körper quasi wieder aus dem Wasser befördern. Da die Auftriebskraft in die entgegengesetzte Richtung drückt, wie die Anziehungskraft der Erde, werden wir im Wasser leichter, je weiter wir hinein gehen. Ganz von selber schwimmen tun wir dann aber leider doch nicht. Die Dichte unseres Körpers ist nämlich etwas höher als die von Wasser. Das bedeutet, dass der untergetauchte Teil unseres Körpers etwas mehr wiegt, als der Teil des Wassers, der durch den Körper verdrängt wird. Ist das nicht der Fall, wie z.B. bei Holz oder Plastik, schwimmt der entsprechende Gegenstand auf dem Wasser. Wie bereits erwähnt ist die Dichte hierfür entscheidend. Sie gibt das Verhältnis von Gewicht zu Volumen an. Für die Schwerkraft ist allein das Gewicht maßgeblich. Je schwerer, desto stärker die Anziehung zur Erde. Für die Auftriebskraft ist nur das Volumen entscheidend. Weniger dichte Materialien haben bei gleichem Gewicht ein höheres Volumen und verdrängen dadurch mehr Wasser. Die Auftriebskraft wird also irgendwann stärker als die Schwerkraft und der Gegenstand schwimmt. Ist die Dichte groß genug, ist das nicht der Fall und der Gegenstand sinkt.

Die Auftriebskraft herrscht übrigens nicht nur im Wasser. Auch die von uns verdrängte Luft erzeugt einen Auftrieb. Da Luft aber so leicht ist und damit auch der Teil der verdrängten Luft quasi nichts wiegt, ist die Auftriebskraft in Luft für uns vernachlässigbar klein, so dass nur der Einfluss der Schwerkraft zu tragen kommt.

Wie funktioniert eine Mikrowelle?

Vor ein paar Wochen ging es um die Funktionsweise eines Induktionsherdes. Schon viel länger Einzug in die meisten Haushalte hat die „Mikrowelle“ erhalten. Eigentlich muss man von einem Mikrowellenherd sprechen, da die Mikrowelle nur das physikalische Phänomen hinter dem Gerät ist. Aber wie genau erwärmt ein Mikrowellenherd eigentlich das Essen?

Wie der Name schon sagt, spielen hier die sogenannten Mikrowellen die entscheidende Rolle. Mikrowellen sind elektromagnetische Wellen mit einer Wellenlänge von 0,1 bis 30 cm. In Mikrowellenherden werden Wellen mit etwa 12 cm Länge erzeugt. Zum Vergleich: Sichtbares Licht hat eine Wellenlänge von 0,4 bis 0,7 mm, Radiowellen liegen im Bereich von Metern bis hin zu Kilometern. Aber was bewirken die erzeugten Mikrowellen in dem Essen?

Eine elektromagnetische Welle hat nur einen Einfluss auf ein Molekül, wenn dieses einen Dipol besitzt. Das heißt, dass eine Seite des Moleküls leicht positiv, die andere Seite negativ geladen ist. Wasser, das in jedem unserer Lebensmittel enthalten ist, weißt genau so einen Dipol auf. Wenn ein Wassermolekül sich nun in einem elektromagnetischen Feld aus Mikrowellen befindet, wird es durch die Schwingung der Wellen in Rotation versetzt. Die Moleküle fangen also an sich zu bewegen. Da sie aber in einer festen Mahlzeit oder auch einer Flüssigkeit sehr eng nebeneinander liegen, kollidieren die Moleküle und durch die auftretende Reibung entsteht Wärme. Diese Wärme sorgt dann für die Erhitzung der gesamten Speise.

Da der menschliche Körper auch zu einem Großteil aus Wasser besteht, sind Mikrowellen für Menschen nicht ganz ungefährlich. Denn das Selbe, was mit dem Essen passiert, kann auch mit menschlichem Gewebe passieren, wenn es Mikrowellen ausgesetzt wird. Aus diesem Grund sind Mikrowellenherde nach außen hin mit einem Metallgehäuse abgeschirmt. An Metall werden Mikrowellen nämlich reflektiert und bleiben so im Inneren des Herdes. Auch in die eigentlich für Mikrowellen durchlässige Glasscheibe ist ein Metallgitter eingebaut. Durch die Sicherheitsfunktion, dass der Herd nur eingeschaltet werden kann, wenn die Klappe geschlossen ist, geht von so einem Herd allerdings keine Gefahr für den Betreiber aus.

 

Quellen:

https://www.weltderphysik.de/thema/hinter-den-dingen/mikrowellenherd/

https://praxistipps.focus.de/wie-funktioniert-eine-mikrowelle-einfach-erklaert_45520

Warum werden in Franken Osterbrunnen geschmückt?

Wer über die Ostertage durch die fränkische Schweiz fährt, sieht sie in fast jedem Ort: Osterbrunnen. Mit etlichen bunten Eiern, Schleifen und Zweigen sind sie geschmückt und laden nicht nur fränkische Wanderer und Durchreisende zum Anhalten und Staunen ein. Aber woher kommt eigentlich der Brauch, dass zu Ostern die Brunnen geschmückt werden?

Tatsächlich hat dieser Brauch seinen Ursprung in Franken und ist auch vor allem dort bis heute verbreitet. Ausschlaggebend dafür, dass gerade Brunnen geschmückt werden, ist das Wasser, dass früher vor allem aus solchen Brunnen geholt wurde. Dem Wasser, dass über Ostern geholt wurde, wurde eine besondere Wirkung zugesprochen. Das heilige Osterwasser wurde zur Reinigung der Wohnung, zum Waschen oder auch zum Trinken genommen. Durch die jeweilige Anwendung galt der Ort oder die Person als geheiligt und gereinigt. Durch dieses Ritual wurde dem Brunnen, aus dem das Wasser stammte, eine besondere Ehre zu teil. Um das hervorzuheben wurden die Brunnen bunt verziert. Durch flächendeckende Wasserleitungen in die Orte flachte dieser Brauch deutlich ab, bis er später als schönes Ritual wieder aufgenommen wurde.

So kommt es, dass bis heute um die Osterzeit Brunnen in Franken mit viel Aufwand festlich dekoriert werden. Wer möchte kann mittlerweile sogar organisierte Tagesreisen zu den schönsten Brunnen unternehmen.

 

Quellen:

https://www.fraenkische-schweiz.com/de/erleben/sehenswert/osterbrunnen/

https://www.ecowoman.de/freizeit/heimat/brauch-osterbrunnen-schmuecken-in-der-fraenkischen-schweiz-2309

Wie entstehen Kondensstreifen?

Achtung Spoileralarm: Nein Kondensstreifen sind keine Chemtrails!!!

Auch wenn sich diese Verschwörungstheorie hartnäckig hält, haben Kondensstreifen in keinster Weise etwas mit dem absichtlichen Versprühen von irgendwelchen Chemikalien zu tun. Aber wie genau entstehen sie dann und warum können sie so unterschiedlich aussehen?

Bei der Verbrennung von Kerosin in den Triebwerken eines Flugzeugs entsteht hauptsächlich Wasserdampf und CO2. Da Kerosin aber ähnlich wie Benzin oder Diesel kein Reinstoff ist, sondern aus vielen verschiedenen Substanzen besteht, entstehen durch die unsaubere Verbrennung einzelner Bestandteile auch Rußpartikel. Feinste Wasserdampfteilchen sind erst einmal unsichtbar. Die Rußpartikel dienen allerdings als Anlagerungsstellen für den Wasserdampf, der dort bei den in der Flughöhe herrschenden Temperaturen kondensiert. Man spricht von Kondensationskeimen. Natürlich lagert sich nicht nur ein Wasserteilchen an ein Rußpartikel. In sehr kurzer Zeit bilden sich Tropfen große Ansammlungen, die bei den dort herrschenden Temperaturen in der Regel gleich zu Kristallen gefrieren. Sobald die Gebilde eine gewisse Größe erreicht haben wird an ihnen das Licht so stark gestreut, dass es für uns weiß erscheint (vgl.“Warum sind Wolken weiß„). Dadurch, dass die Triebwerke konstant laufen, können dann die bekannten Kondensstreifen hinter den Flugzeugen entstehen.

Wie lang sich ein Kondensstreifen hält oder auch ob überhaupt einer entsteht ist von der Luft abhängig, durch die das Flugzeug gerade fliegt. Ausschlaggebend ist vor allem die dort vorherrschende Luftfeuchtigkeit. Ist die Luft zu trocken, lösen sich die Wasserteilchen sehr schnell auf und man sieht gar nichts. Bei sehr hoher Luftfeuchtigkeit können Kondensstreifen auch mal über mehrere Stunden am Himmel bleiben bis sie durch Luftströmungen in ein Gebiet trockenerer Luft geschoben werden. Je nach Luftbewegung können Kondensstreifen quasi jede Form annehmen, vorausgesetzt sie bleiben lange genug erhalten.

 

Quellen:

http://www.airliners.de/warum-chemtrails-kondensstreifen-antworten-cockpit/34692

https://weather.com/de-DE/wissen/wetterlexikon/news/kondensstreifen-so-entstehen-die-kunstlichen-wolken

Was ist eigentlich Kondensmilch?

„Milch in den Kaffee?“ In billigen Unterkünften oder Cafés wird hier oft zur Kondensmilch gegriffen. Aber was ist Kondensmilch eigentlich?

Der Hauptzweck von Kondensmilch ist, dass sie länger haltbar ist als normale Milch. Um das zu gewährleisten ist der erste Schritt der Kondensmilch Herstellung eine Erhitzung von „normaler“ Milch auf etwa 80-100 °C. Dabei wird ein Großteil aller potentiellen Keime abgetötet. Der entscheidende Schritt, der der Kondensmilch auch ihren Namen verleiht, ist das Eindicken der abgekochten Milch. Das Ganze geschieht bei Unterdruck und Temperaturen von etwa 50°C. Das in der Milch enthaltene Wasser verdampft und kondensiert an anderer Stelle wieder, so dass es von der Milch getrennt werden kann. Dieses kondensieren ist vermutlich für den Namen „Kondensmilch“ verantwortlich. Was über bleibt ist eine etwas dickere Milch mit höherem Fettgehalt. Für absolute Keimfreiheit wird die Milch anschließend noch einmal auf ca. 120 °C erhitzt. Dadurch werden leider auch die gesunden Bestandteile der Milch vernichtet, es kann aber eine sehr lange Haltbarkeit garantiert werden.

Die Idee stammt natürlich aus Zeiten, in denen Hygiene und Haltbarkeit ein sehr größeres Problem war, als es heutzutage der Fall ist. Trotzdem hat sich die Kondensmilch in manchen Branchen bis heute gehalten und es gibt mittlerweile verschiedenste Varianten mit unterschiedlichem Fettgehalt oder auch Zuckergehalt (gezuckerte Kondensmilch).

 

Quellen:

https://www.nestle.de/unternehmen/geschichte/kondensmilch

https://www.worldsoffood.de/kochen-und-rezepte/item/2821-so-wird-kondensmilch-hergestellt.html

Warum werden Blätter im Herbst bunt?

Der Herbst ist da. Das sieht man vor allem an den bunten Laubbäumen, die in den verschiedensten Farben leuchten. Aber warum färben sich die Blätter der Bäume eigentlich im Herbst?

Dieses Naturphänomen ist eine clevere Überlebenstaktik der Bäume. Die im Frühjahr und Sommer grünen Blätter versorgen die Bäume mit Hilfe der Photosynthese mit dem Stoff, den sie zum Wachsen brauchen. Der grüne Farbstoff Chlorophyll vollzieht diese Photosynthese, in der Kohlendioxid und Wasser zu Sauerstoff und dem wichtigen Traubenzucker umgewandelt werden. Wenn die Temperaturen im Herbst fallen und die Tage, und damit die Lichteinstrahlung auf die Bäume, kürzer werden, merken die Bäume das und leiten ihre Vorbereitung auf den Winter ein. Diese beinhaltet unter anderem das Abziehen des Chlorophylls aus den Blättern, um es in anderen Bereichen des Baums, wie zum Beispiel den Wurzeln, einzulagern. Im Frühjahr wird dieses Chlorophyll dann wieder benötigt um die neuen Blätter damit „auszustatten“. Was wir nun sehen ist die eigentliche Farbe der Blätter, die sonst nur von dem dominanten Grün überdeckt wird. In der Regel sind das Töne von gelb über orange bis hin zu tief rot.

Eine weitere Maßnahme ist das Kappen der Wasserleitungen in die Blätter. Dadurch verdorren die Blattansätze und der nächste stärkere Windstoß lässt die Blätter zu Boden segeln. Auch das hat seinen Grund. Durch die große Oberfläche der Blätter verliert ein Baum nämlich einen großen Teil des Wassers, das er aus dem Boden zieht. Das ist im Sommer zwar so gewollt, im Winter ist die ausreichende Wasserzufuhr allerdings nicht immer gewährleistet. Würde ein Baum seine Blätter den Winter über nicht abwerfen, bestände somit das Risiko, dass er einfach austrocknet.

Die Bäume ziehen also alle für sie wichtigen Stoffe aus den Blättern, um dann die überflüssige Verdunstungsfläche loszuwerden. Ein sehr cleveres Prinzip die kalte Jahreszeit zu überstehen, dass uns außerdem noch die tollen Farben der Bäume im Herbst beschert. Die abgeworfenen Blätter werden dann übrigens von vielen kleinen Waldlebewesen wieder zu nährstoffhaltigem Boden umgewandelt, der dann wiederum als Grundlage für den Erhalt der Bäume dient. Ein natürlicher Kreislauf, von dem alle profitieren.

 

Quellen:

https://www.geo.de/geolino/natur-und-umwelt/herbst-laub-warum-sich-blaetter-verfaerben

https://www.spektrum.de/frage/warum-faerben-sich-die-blaetter-im-herbst/792637

Wie funktioniert ein selbst kühlendes Bierfass?

Im Sommer am See, auf der Grillparty oder am Festivalgelände ohne Strom ein kühles Bier genießen zu können ist nicht immer einfach. Selbst kühlende Bierfässer sind hierfür perfekt geeignet. Man muss nur einen Hebel umlegen und das Bier ist innerhalb weniger Minuten auf Kühlschranktemperatur. Aber wie funktioniert das, so ganz ohne Strom?

In der Technik eines selbst kühlenden Bierfasses werden rein physikalische Effekte ausgenutzt. Nämlich zum Einen die Verdunstung von Wasser und zum Anderen die Adsorption von Wasserdampf auf einer hydrophilen, also Wasser anziehenden Oberfläche. Wie ist nun so ein Bierfass aufgebaut? Ganz innen liegt natürlich der Behälter für das Bier. Direkt um diesen Behälter befindet sich eine Schicht mit einem Material, das Wasser aufsaugen kann. Das kann zum Beispiel eine Art Fließ oder Watte sein. In der nächsten Schicht befindet sich ein so genannter Zeolith. Das ist ein in der Natur vorkommendes, poröses Material mit sehr kleinen Poren. Dieses Zeolith Material hat auf Grund der feinen Poren eine sehr große Oberfläche. Außerdem ist es hydrophil. Das bedeutet, dass Wasser(dampf) stark dazu tendiert sich auf der Oberfläche des Zeolithen anzulagern – man spricht dabei von adsorbieren. Die Kammern mit nasser Watte und Zeolith sind abgetrennt und können über ein Ventil miteinander verbunden werden. Außerdem wird die Zeolith-Kammer so gut es geht evakuiert, so dass ein Vakuum vorliegt. Auch aus der Kammer mit der nassen Watte wird die Luft gesaugt, allerdings nur so weit, dass das Wasser gerade so noch flüssig bleibt. Bei zu geringem Druck würde das Wasser schon verdampfen bevor man das Ventil öffnet.

In diesem Zustand wird die innerste Kammer des Fasses mit Bier gefüllt und verschlossen. Ab diesem Zeitpunkt kann jederzeit der Hebel am Fass umgelegt werden, der das Ventil zwischen den evakuierten Kammern öffnet. Wenn das geschieht, findet ein Druckausgleich statt, da in der Watte-Kammer ja noch ein Restdruck gelassen wurde. Dieser sinkt jetzt noch weiter und das Wasser in der Watte fängt an zu verdampfen. Das Verdampfen benötigt aber Energie. Diese Energie wird dem Bier entzogen, welches dadurch abgekühlt wird. So weit so gut doch in einer geschlossenen Kammer verdampft nur ein geringer Teil des Wassers. Nämlich so lange, bis sich ein Gleichgewicht zwischen Flüssigkeit und Dampf eingestellt hat. Jetzt kommt der Zeolith ins Spiel. Durch die Adsorption des verdampften Wassers auf dessen Oberfläche sorgt der nämlich dafür, dass sich eben kein Gleichgewicht einstellt, sondern der entstehende Wasserdampf sofort „abgezogen“ wird.  Der Verdampfungsprozess kann somit weiter laufen und das Bier wird weiter gekühlt.

Dem Wasser in der Watte wird durch die Verdampfung so viel Wärme entzogen, dass es relativ schnell sogar gefriert. Ab diesem Zeitpunkt verlangsamt sich die Verdampfung. Das Bier wird aber trotzdem weiter gekühlt, da die Wärme aus dem Bier jetzt auch noch dafür benötigt wird um das gefrorene Wasser erst einmal zu schmelzen. Dadurch hält der Kühlvorgang über mehrere Stunden an und es kann lange kaltes Bier genossen werden.

Während der Adsorption des Wassers wird die aus dem Bier gezogene Wärme übrigens wieder freigesetzt und über die Fasswand nach außen abgegeben. Das Fass fühlt sich daher von außen warm an, wird innen aber gekühlt. Bei der nächsten Grillparty weißt du jetzt also auch warum das Bier durch das Umlegen eines Hebels gekühlt werden kann.

 

Quellen:

http://www.uni-protokolle.de/Lexikon/Selbstk%FChlendes_Bierfass.html

http://www.tucher.de/unsere-biere/unser-sortiment/unser-coolkeg/

Herd vs Wasserkocher – Womit sollte man Wasser kochen?

Kochst du dein Nudelwasser auf dem Herd oder benutzt du dafür den Wasserkocher? Hast du dich überhaupt schon einmal gefragt welche Variante sinnvoller ist? Eine gute Frage mit einer einfachen Antwort: Mindestens mal aus energetischer Sicht ist der Wasserkocher klar die zu bevorzugende Variante. Warum das so ist möchte ich an einem kurzen Beispiel erklären.

Um beide Methoden vergleichen zu können muss man zunächst mal wissen, welche Leistungen und damit welchen Stromverbrauch beide Varianten haben. In meinem Beispiel nehme ich an, dass die Herdplatte bis zum kochen des Wassers auf höchster Stufe läuft. Auf dieser Stufe hat sie eine Leistung von 1500 Watt. Der Wasserkocher in meinem Beispiel  ist in der Lage 2000 Watt zu leisten. Als nächstes muss die Zeit betrachtet werden, die es dauert bis das Wasser kocht. In meinem Beispiel nehme ich ungefähre Erfahrungswerte an. Diese betragen für die Herdplatte etwa 6 Minuten und für den Wasserkocher 2 Minuten. Natürlich sind diese Werte von der Menge des Wassers abhängig, werden der Einfachheit halber hier aber einfach so gewählt.

Der jeweilige Stromverbrauch errechnet sich jetzt aus dem Produkt der Leistung und der benötigten Zeit in Sekunden. Folglich lautet die Rechnung für die Herdplatte: 1500 Watt (Joule pro Sekunde) mal 360 Sekunden (6 Minuten) ergibt 540.000 Joule. Eine Kilowattstunde, in der der Stromverbrauch in der Regel gemessen wird, sind 360.000 Joule. Somit verbraucht die Herdplatte zum Wasserkochen 1,5 kWh. Die gleiche Rechnung für den Wasserkocher lautet 2000 Watt mal 120 Sekunden und ergibt 240.000 Joule bzw. 0,67 kWh. Man sieht also, dass das Kochen von Wasser mit einem Wasserkocher weniger Strom verbraucht, als im Topf auf dem Herd. Jetzt fragst du dich vielleicht warum das so ist. Auf der Herdplatte geht insgesamt einfach mehr Wärme an die Umgebung und damit nicht direkt ins Wasser.

Eine kleine Zusatzrechnung: Angenommen man benötigt dreimal pro Woche kochendes Wasser um Essen zuzubereiten. Dann sind das ca. 150 mal im Jahr. Beim Umstieg von Herd auf Wasserkocher  würde man damit im Jahr etwa 125 kWh sparen. Bei einem Strompreis von 30 Cent pro kWh sind das 37€ also einmal gut essen gehen 😉